The Protozoan Tetrahymena: Cellular Model for Biological Studies

Main Article Content

Papa Daouda Mar
Bouchra El Khalfi
Mounir Benyoussef
Abdelaziz Soukri

Abstract

Biological research, including clinical trials, mainly uses animals as model organisms. Currently, animal experimentation remains controversial for several reasons, namely the implementation of animal protection and ethics panels, the high costs and the long duration of experiments. These constraints encourage researchers to use alternative methods in order to overcome these barriers.

The ciliate Tetrahymena is a unicellular eukaryotic organism that has contributed significantly to the acquisition of knowledge in the field of fundamental biology. Characterised by a well-ordered structure and a short life cycle, the protozoan Tetrahymena is very commonly used in the laboratory due to the ease involved in handling it. Therefore, this organism has allowed researchers to elucidate a number of mechanisms in higher organisms including mammals.

This bibliographic review describes the favourable biological characteristics of the protozoan Tetrahymena as well as various physiological and molecular studies that have been carried out on this organism. Studies have shown that Tetrahymena is one of the alternatives to animal experimentation and a major contributor to the development of biological and life sciences.

Keywords:
Tetrahymena, cell model, structure, life cycle, physiological studies, molecular studies.

Article Details

How to Cite
Mar, P. D., Khalfi, B. E., Benyoussef, M., & Soukri, A. (2019). The Protozoan Tetrahymena: Cellular Model for Biological Studies. Annual Research & Review in Biology, 32(5), 1-12. https://doi.org/10.9734/arrb/2019/v32i530095
Section
Review Article

References

1. Boehm M, Bonifacino JS. Genetic analyses of adaptin function from yeast to mammals. Gene. 2002;286(2):175–86.
2. Kimble J. Molecular regulation of the mitosis/meiosis decision in multicellular organisms. Cold Spring Harb Perspect Biol. 2011;3:8.
Available:https://doi.org/10.1101/cshperspect.a002683
3. Kourtis N, Tavernarakis N. Autophagy and cell death in model organisms. Cell Death Differ. 2009;16(1):21–30.
Available:https://doi.org/10.1038/cdd.2008.120
4. Westermann B. Mitochondrial dynamics in model organisms: What yeasts, worms and flies have taught us about fusion and fission of mitochondria. Semin Cell Dev Biol. 2010;21(6):542–9.
Available:https://doi.org/10.1016/j.semcdb.2009.12.003
5. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: Tool for the unification of biology. Nature Genetics; 2000.
Available:https://doi.org/10.1038/75556
6. Gönczy P. Mechanisms of asymmetric cell division: Flies and worms pave the way. Nat Rev Mol Cell Biol. 2008;9(5):355–66.
Available:https://doi.org/10.1038/nrm2388
7. Simons M, Mlodzik M. Planar cell polarity signaling: From fly development to human disease. Annu Rev Genet. 2008;42:517–40.
Available:https://doi.org/10.1146/annurev.genet.42.110807.091432
8. Davis RH. The age of model organisms. Nat Rev Genet. 2004;5(1):69–76.
Available:https://doi.org/10.1038/nrg1250
9. Beisson J, Bétermier M, Bré MH, Cohen J, Duharcourt S, Duret L, et al. Paramecium tetraurelia: The renaissance of an early unicellular model. Cold Spring Harb Protoc. 2010;(1):pdb.emo140.
Available:https://doi.org/10.1101/pdb.emo140
10. Collins K, Gorovsky MA. Tetrahymena thermophila. Curr Biol CB. 2005;15(9): R317-318. Available:https://doi.org/10.1016/j.cub.2005.04.039
11. Turkewitz AP, Orias E, Kapler G. Functional genomics: The coming of age for Tetrahymena thermophila. Trends Genet TIG. 2002;18(1):35–40.
12. Furgason W. The significant cytostomal pattern of the “Glaucoma-Colpidium” group and a proposed new genus and species, Tetrahymena geleii. Arch Für Protistenkd. 1940;94:224–66.
13. Ruehle MD, Orias E, Pearson CG. Tetrahymena as a unicellular model eukaryote: Genetic and genomic tools. Genetics. 2016;203(2):649–65.
Available:https://doi.org/10.1534/genetics.114.169748
14. Briguglio JS, Turkewitz AP. Tetrahymena thermophila: A divergent perspective on membrane traffic. J Exp Zoolog B Mol Dev Evol. 2014;322(7):500–16.
Available:https://doi.org/10.1002/jez.b.22564
15. Lynch M, Field MC, Goodson HV, Malik HS, Pereira-Leal JB, Roos DS, et al. Evolutionary cell biology: Two origins, one objective. Proc Natl Acad Sci. 2014; 111(48):16990–4.
Available:https://doi.org/10.1073/pnas.1415861111
16. Satir BH, Wissig SL. Alveolar sacs of Tetrahymena: Ultra structural character-istics and similarities to subsurface cisterns of muscle and nerve. J Cell Sci. 1982;55: 13–33.
17. Frankel J. Cell biology of Tetrahymena thermophila. Methods Cell Biol. 2000;62: 27–125.
18. Nilsson JR. Phagotrophy in Tetrahymena. In: Biochemistry and physiology of protozoa. Academy Press. New York: Levandowsky M & Hutner SH. 1979;339-79.
19. Aufderheide K. Mitochondrial associations with specific micro tubular components of the cortex of Tetrahymena thermophila. I. Cortical patterning of mitochondria. J Cell Sci. 1979;39:299–312.
20. Franke WW, Eckert WA, Krien S. Cytomembrane differentiation in a ciliate, Tetrahymena pyriformis. I. Endoplasmic reticulum and dictyosomal equivalents. Z Zellforsch Mikrosk Anat Vienna Austria 1948. 1971;119(4):577–604.
21. Müller M, Baudhuin P, De Duve C. Lysosomes in Tetrahymena pyriformis. I. Some properties and lysosomal localization of acid hydrolases. J Cell Physiol. 1966;68(2):165–75.
Available:https://doi.org/10.1002/jcp.1040680211
22. Müller M, Hogg JF, Duve C de. Distribution of tricarboxylic acid cycle enzymes and glyoxylate cycle enzymes between mitochondria and peroxisomes in Tetrahymena pyriformis. J Biol Chem. 1968;243(20):5385–95.
23. Kaczanowska J, Buzanska L, Ostrowski M. Relationship between spatial pattern of basal bodies and membrane skeleton (epiplasm) during the cell cycle of Tetrahymena: cdaA mutant and anti-membrane skeleton immunostaining. J Eukaryot Microbiol. 1993;40(6):747–54.
24. Williams NE, Honts JE, Kaczanowska J. The formation of basal body domains in the membrane skeleton of Tetrahymena. Dev Camb Engl. 1990;109(4):935–42.
25. Jaeckel-Williams R. Nuclear divisions with reduced numbers of microtubules in Tetrahymena. J Cell Sci. 1978;34:303–19.
26. Larsen J. The influence of growth phase and culture conditions of Tetrahymena on effects of cadmium. Toxicology. 1989; 58(2):211–23.
27. Mountassif D, Kabine M, Manar R, Bourhim N, Zaroual Z, Latruffe N, et al. Physiological, morphological and metabolic changes in Tetrahymena pyriformis for the in vivo cytotoxicity assessment of metallic pollution: Impact on d-β-hydroxybutyrate dehydrogenase. Ecol Indic. 2007;7(4):882–94.
Available:https://doi.org/10.1016/j.ecolind.2006.11.010
28. Zhang YY, Yang J, Yin XX, Yang SP, Zhu YG. Arsenate toxicity and stress responses in the freshwater ciliate Tetrahymena pyriformis. Eur J Protistol. 2012;48(3):227–36. Available:https://doi.org/10.1016/j.ejop.2012.01.005
29. Kapaj S, Peterson H, Liber K, Bhattacharya P. Human health effects from chronic arsenic poisoning- A review. J Environ Sci Health Part A Tox Hazard Subst Environ Eng. 2006;41(10):2399–428. Available:https://doi.org/10.1080/10934520600873571
30. Tchounwou PB, Centeno JA, Patlolla AK. Arsenic toxicity, mutagenesis, and carcinogenesis-A health risk assessment and management approach. Mol Cell Biochem. 2004;255(1–2):47–55.
31. Savory J, Exley C, Forbes WF, Huang Y, Joshi JG, Kruck T, et al. Can the controversy of the role of aluminum in Alzheimer’s disease be resolved? What are the suggested approaches to this controversy and methodological issues to be considered? J Toxicol Environ Health. 1996;48(6):615–35.
32. Sparling DW, Lowe TP. Environmental hazards of aluminum to plants, invertebrates, fish, and wildlife. In: Reviews of Environmental Contamination and Toxicology. Springer. New York. 1996;1–127.
Available:https://doi.org/10.1007/978-1-4612-2354-2_1
33. Sauvant MP, Pepin D, Bohatier J, Groliere CA. Effects of chelators on the acute toxicity and bioavailability of aluminium to Tetrahymena pyriformis. Aquat Toxicol. 2000;47(3):259–75.
Available:https://doi.org/10.1016/S0166-445X(99)00015-6
34. Chen F, Leick V. The protozoan Tetrahymena as a bioindicator to screen bioactive substances. J Microbiol Methods. 2004;59(2):233–41.
Available:https://doi.org/10.1016/j.mimet.2004.07.003
35. Lainhart W, Stolfa G, Koudelka GB. Shiga toxin as a bacterial defense against a eukaryotic predator, Tetrahymena thermophila. J Bacteriol. 2009;191(16): 5116–22.
Available:https://doi.org/10.1128/JB.00508-09
36. Brüssow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: From genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev MMBR. 2004;68(3):560–602.
Available:https://doi.org/10.1128/MMBR.68.3.560-602.2004
37. Láng J, Kőhidai L. Effects of the aquatic contaminant human pharmaceuticals and their mixtures on the proliferation and migratory responses of the bioindicator freshwater ciliate Tetrahymena. Chemos-phere. 2012;89(5):592–601.
Available:https://doi.org/10.1016/j.chemosphere.2012.05.058
38. Errafiy N, Soukri A. Purification and partial characterization of glyceraldehyde-3-phosphate dehydrogenase from the ciliate Tetrahymena thermophila. Acta Biochim Biophys Sin. 2012;44(6):527–34.
Available:https://doi.org/10.1093/abbs/gms028
39. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E. Increased 8-hydroxy-deoxyguanosine, a marker of oxidative damage to DNA, in major depression and myalgic encephalomyelitis / chronic fatigue syndrome. Neuro Endocrinol Lett. 2009; 30(6):715–22.
40. Flora SJ. Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid Med Cell Longev. 2009; 2(4):191–206.
41. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.
42. Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling. Moll Cel. 2007;26:1-14.
43. Sevindik M. Investigation of oxidant and antioxidant status of edible mushroom Clavariadelphus truncatus. Mantar Dergisi. 2018;9(2):165-168.
44. Gerber M, Boutron-Ruault MC, Hercberg S, Riboli E, Scalbert A, Siess MH. Food and cancer: State of the art about the protective effect of fruits and vegetables. Bull Cancer (Paris). 2002;89(3):293–312.
45. Kohen R, Nyska A. Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 2002;30(6):620–50.
Available:https://doi.org/10.1080/01926230290166724
46. Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Rep. 2016;4(5):519-522.
Available:https://doi.org/10.3892/br.2016.630
47. Errafiy N, Ammar E, Soukri A. Protective effect of some essential oils against oxidative and nitrosative stress on Tetrahymena thermophila growth. J Essent Oil Res. 2013;25(4):339–47.
Available:https://doi.org/10.1080/10412905.2013.775681
48. Fourrat L, Iddar A, Valverde F, Serrano A, Soukri A. Effects of oxidative and nitrosative stress on Tetrahymena pyriformis glyceraldehyde-3-phosphate dehydrogenase. J Eukaryot Microbiol. 2007;54(4):338–46.
Available:https://doi.org/10.1111/j.1550-7408.2007.00275.x
49. Li W, Zhang S, Numata O, Nozama Y, Wang S. Tp MRK regulates cell division of Tetrahymena in response to oxidative stress. Cell Biochem Funct. 2009;27(6): 364-369.
50. Available:https://doi.org/10.1002/cbf.1583.Karym EM. Impacts d’antioxydant naturels sur la neurodégénérescence induite par des acides gras à très longue chaine: Aspects biochimiques et métaboliques ; 2016.
[Accessed 8 June 2018]
Available:http://www.theses.fr/s101404
51. Farina M, Avila DS, da Rocha JBT, Aschner M. Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury. Neurochem Int. 2013;62(5):575–94.
Available:https://doi.org/10.1016/j.neuint.2012.12.006
52. Richardson N. The therapeutic potential of iron chelators. Expert Opin Investig Drugs. 1999;8(12):2141–58. Available:https://doi.org/10.1517/13543784.8.12.2141
53. Kurutas EB. The importance of anti-oxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2016;15(1): 71.
Available:https://doi.org/10.1186/s12937-016-0186-5
54. Mar PD, El Khalfi B, Soukri A. Protective effect of oregano and sage essentials oils against the effect of extracellular H2O2 and SNP in Tetrahymena thermophila and Tetrahymena pyriformis. J King Saud Univ – Sci; 2018.
Available:https://doi.org/10.1016/j.jksus.2018.05.005
55. Wink DA, Mitchell JB. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med. 1998; 25(4–5):434–56. Available:https://doi.org/10.1016/S0891-5849(98)00092-6
56. Zou M, Yesilkaya A, Ullrich V. Peroxynitrite inactivates prostacyclin synthase by heme–thiolate-catalyzed tyrosine nitration. Drug Metab Rev. 1999;31(2):343–9.
Available:https://doi.org/10.1081/DMR-100101922
57. Hennessey TM, Lampert TJ. Chapter 15 - behavioral bioassays and their uses in Tetrahymena. In: Collins K, editor. Methods in Cell Biology. Academic Press. 2012;109:393–410.
Available:https://doi.org/10.1016/B978-0-12-385967-9.00015-3
58. Gibbons IR, Rowe AJ. Dynein: A protein with adenosine Triphosphatase activity from cilia. Science. 1965;149(3682):424–6. Available:https://doi.org/10.1126/science.149.3682.424
59. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR. Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell. 1982;31(1):147–57.
60. Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985;43:405–13.
61. Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 1996; 84(6):843–51.
62. Allen SL. Genomic exclusion: A rapid means for inducing homozygous diploid lines in Tetrahymena pyriformis, syngen 1. Science. 1967;155(3762):575–7.
63. Hamilton EP, Suhr-Jessen PB, Orias E. Pronuclear fusion failure: An alternate conjugational pathway in Tetrahymena thermophila, induced by vinblastine. Genetics. 1988;118(4):627–36.
64. Csaba G. The hormonal system of the unicellular Tetrahymena: A review with evolutionary aspects. Acta Microbiol Immunol Hung. 2012;59(2):131–56.
Available:https://doi.org/10.1556/AMicr.59.2012.2.1
65. Csaba G, Kovács P, Pállinger É. Effect of starvation on insulin production and insulin binding in Tetrahymena. Cell Biochem Funct. 2007;25(4):473–477.
Available:https://doi.org/10.1002/cbf.1333
66. Csaba G, Kovács P, Pállinger E. Increased hormone levels in Tetrahymena after long-lasting starvation. Cell Biol Int. 2007;31(9): 924–928.
Available:https://doi.org/10.1016/j.cellbi.2007.02.007
67. Csaba G, Pállinger E. How applicable is the general adaptation syndrome to the unicellular Tetrahymena? Cell Biochem Funct. 2009;27(1):12–5.
Available:https://doi.org/10.1002/cbf.1527
68. Csaba G. Lectins and Tetrahymena - A review. Acta Microbiol Immunol Hung. 2016;63(3):279–91. Available:https://doi.org/10.1556/030.63.2016.001
69. Endriga MA, Mojica ERE, Merca FE, Lacsamana MS, Deocaris CC. Evaluation of some lectins as anti-protozoal agents. J Med Sci. 2005;5(1):31–4.
Available:https://doi.org/10.3923/jms.2005.31.34
70. Hébert E. Endogenous lectins as cell surface transducers. Biosci Rep. 2000; 20(4):213–37. Available:https://doi.org/10.1023/A:1026484722248
71. Ip WKE, Takahashi K, Ezekowitz RA, Stuart LM. Mannose-binding lectin and innate immunity. Immunol Rev. 2009; 230(1):9–21.
Available:https://doi.org/10.1111/j.1600-065X.2009.00789.x