Application of Veterinary Cytogenetics in Domestic Animals: A Review

Main Article Content

Muhammad Sanusi Yahaya
Mohd Shahrom Salisi
Nur Mahiza Md. Isa
Abd Wahid Haron
Innocent Damudu Peter

Abstract

Cytogenetics is the study of chromosomes; their structure and properties, chromosome behavior during cell division, their influence on traits and factors which cause changes in chromosomes.  Veterinary cytogenetics is the application of cytogenetics to clinical problems that occur in animal production. It has been applied to understand problems such as infertility and its types, embryonic and fetal death, abnormality in sexual and somatic development and hybrid sterility and also prenatal sex determination and other forms of chromosomal abnormalities. These are achieved through conventional and banded karyotyping techniques and molecular cytogenetic techniques. Although conventional techniques are still useful and very widely applied, the nature of cytogenetics has gradually changed as a result of advances achieved in the molecular cytogenetic techniques for example fluorescent in situ hybridization and array-based techniques. These changes are evident in both molecular diagnostics and basic research. The combination of conventional and molecular cytogenetics has given rise to high resolution techniques which have enabled the study of fundamental questions regarding biological processes. It enables the study of inherited syndromes, the mechanisms of tumorigenesis at molecular level, genome organization and the determination of chromosome homologies between species. It allows the ease with which animals are selected in breeding programs and other important aspects of animal production. In this paper we discussed a number of techniques employed in cytogenetics and their methodologies, and recommend where future focus should be for the benefits of animal production.

Keywords:
Cytogenetics, karyotyping, chromosomal aberrations, in situ hybridization.

Article Details

How to Cite
Yahaya, M. S., Salisi, M. S., Isa, N. M. M., Haron, A. W., & Peter, I. D. (2019). Application of Veterinary Cytogenetics in Domestic Animals: A Review. Annual Research & Review in Biology, 33(1), 1-16. https://doi.org/10.9734/arrb/2019/v33i130112
Section
Review Article

References

Speicher MR, Carter NP. The new cytogenetics: Blurring the boundaries with molecular biology. Nat Rev Genet [Internet]. 2005;6(10):782–92.
Available:http://www.ncbi.nlm.nih.gov/pubmed/16145555

Gustavsson I, Rockborn G. Chromosome abnormality in three cases of lymphatic leukaemia in cattle. Nature. 1964;203(1): 990.

Dyrendhal I, Gustavsson I. Sexual functions, semen characteristics and fertility of bulls carrying the 1/29 chromo-some translocation. Hereditas. 1979; 90(2):281–9.

Demyda-Peyrás S, Membrillo A, Bugno-Poniewierska M, Pawlina K, Anaya G, Moreno-Millán M. The use of molecular and cytogenetic methods as a valuable tool in the detection of chromosomal abnormalities in horses: A case of sex chromosome chimerism in a spanish purebred colt. Cytogenet Genome Res [Internet]. 2013;141(4):277–83.
[Cited 2019 Mar 2]
Available:http://www.ncbi.nlm.nih.gov/pubmed/23735586

Iannuzzi L, Villagómez DAF, King WA. Preface. cytogenet genome res [Internet]. 2009;126(1–2):5–6.
[cited 2017 Dec 30]
Available:http://www.ncbi.nlm.nih.gov/pubmed/20016151

Iannuzzi IG. R-banded promethaphase karyotypes in cattle (Bos taurus L.). Chromosom Res. 1996;4(1):448–56.

Ford CE, Pollok DL GI. Reading conference. In: Ford CE, Pollok DL GI, editor. Proceedings of the First Inter-national Conference for the Standardization of Banded Karyotypes of Domestic Animals. Reading; 1980;145–62.

Di Berardino D, Burguete I. High resolution RBA-banding comparison between early prometaphase chromosomes of cattle (Bos taurus L.) and goat (Capra hircus L.) at 700 band level. Cytogenet Genome Res. 2003;83(1–2):130–8.

El-Bayomi KM, EL-Araby IES, Zaglool AW. Cytogenetic analysis related to some infertility problems in Cattle. Glob Vet. 2011;7(4):323–9.

Naha BC, Prakesh C, Boro P. Review article application of cytogenetic techni-ques in livestock. Int J Sci Nat. 2016;7(1): 30–3.

Serakinci N, Kølvraa S. Molecular cytogenetic applications in diagnostics and research : An overview. Fluoresc Situ Hybrid – Appl Guid. 2009;3–21.

Hayes H, Dutrillaux B, Popescu P, Bourgeois C. Chromosome banding techniques. In 2000;25–68.
[Cited 2017 Apr 15]
Available:http://link.springer.com/10.1007/978-3-642-59711-4_2

Gall JG, Pardue ML. Formation and detection of RNA–DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA. 1969;63(1):378–383.

Blagodatskikh KA, Kramarov VM, Barsova EV, Garkovenko AV, Shcherbo DS, Shelenkov AA, et al. Improved DOP-PCR (iDOP-PCR): A robust and simple WGA method for efficient amplification of low copy number genomic DNA. Kalendar R, editor. PLoS One [Internet]. 2017;12(9): e0184507.
[Cited 2019 Mar 6]
Available:https://dx.plos.org/10.1371/journal.pone.0184507

Wnuk M, Bugno M, Slota E. Application of primed in situ DNA synthesis (PRINS) with telomere human commercial kit in molecular cytogenetics of Equus caballus and Sus scrofa scrofa. Folia Histochem Cytobiol. 2008;46(1):85–8.

Fouquerel E, Parikh D, Opresko P. DNA damage processing at telomeres: The ends justify the means. DNA Repair (Amst) [Internet]. 2016;44:159–68.
Available:http://dx.doi.org/10.1016/j.dnarep.2016.05.022

Barnes RP, Fouquerel E, Opresko PL. The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev [Internet]. 2019;177:37–45.
Available:https://doi.org/10.1016/j.mad.2018.03.013

De Lorenzi L, Morando P, Planas J, Zannotti M, Molteni L, Parma P. Reciprocal translocations in cattle: Frequency estimation. J Anim Breed Genet [Internet]. 2012;129(5):409–16.
[Cited 2019 Mar 6]
Available:http://www.ncbi.nlm.nih.gov/pubmed/22963362

Gustavsson I. Cytogenetics, distribution and phenotypic effects of a translocation in Swedish cattle. Hereditas. 1969;63(1):68–169.

Avila F, Das PJ, Kutzler M, Owens E, Perelman P, Rubes J, et al. Development and application of camelid molecular cytogenetic tools. J Hered [Internet]. 2014;105(6):952–63.
Available:http://10.0.4.69/jhered/ess067

Nakaya M, Tanabe H, Takamatsu S, Hosokawa M, Mitani T. Visualization of the spatial arrangement of nuclear organiza-tion using three-dimensional fluorescence in situ hybridization in early mouse embryos: A new “EASI-FISH chamber glass” for mammalian embryos. J Reprod Dev [Internet]. 2017;63(2):167–74.
[Cited 2019 Mar 5]
Available:http://www.ncbi.nlm.nih.gov/pubmed/28190810

Stomornjak-Vukadin M, Kurtovic-Basic I, Mehinovic L, Konjhodzic R. Combined use of cytogenetic and molecular methods in prenatal diagnostics of chromosomal abnormalities. Acta Inform Med [Internet]. 2015;23(2):68–72.
[Cited 2019 Mar 6]
Available:http://www.ncbi.nlm.nih.gov/pubmed/26005269

Zudova D, Rezacova O, Kubickova S, Rubes J. Aneuploidy detection in porcine embryos using fluorescence in situ hybridization. Cytogenet Genome Res [Internet]. 2003;102(1–4):179–83.
[Cited 2017 Dec 30]
Available:http://www.ncbi.nlm.nih.gov/pubmed/14970699

Foster HA, Sturmey RG, Stokes PJ, Leese HJ, Bridger JM GD. Fluorescence in situ hybridization on early porcine embryos. Methods Mol Biol. 2010;659(1):427–36.

Mary N, Barasc H, Ferchaud S, Billon Y, Meslier F, Robelin D, et al. Meiotic recombination analyses of individual chromosomes in male domestic pigs (Sus scrofa domestica). Shi Q, editor. PLoS One [Internet]. 2014;9(6):e99123.
[Cited 2017 Dec 30]
Available:http://www.ncbi.nlm.nih.gov/pubmed/24919066

Perkins AT, Bickel SE. Using fluorescence in situ hybridization (FISH) to monitor the state of arm cohesion in prometaphase and metaphase i drosophila oocytes. J Vis Exp [Internet]. 2017;130.
Available:https://www.jove.com/video/56802/using-fluorescence-situ-hybridization-fish-to-monitor-state-arm

King WA. Chromosome variation in the embryos of domestic animals. Cytogenet Genome Res [Internet]. 2008;120(1–2):81–90.
[Cited 2017 Dec 30]
Available:http://www.ncbi.nlm.nih.gov/pubmed/18467828

Bugno M, Jabłońska Z, Słota E. Optimalization of fluorescence in situ hybridization conditions in mare oocytes and mouse embryos. Folia Biol (Praha) [Internet]. 2009;57(1–2):49–55.
[Cited 2017 Dec 30]
Available:http://www.ncbi.nlm.nih.gov/pubmed/19459461

Iannuzzi L, King WA, Di Berardino D. Chromosome evolution in domestic bovids as revealed by chromosome banding and fish-mapping techniques [Internet]. Cytogenetic and Genome Research. 2009; 126:49–62.
[cited 2017 Dec 30]
Available:http://www.ncbi.nlm.nih.gov/pubmed/20016156

Issa ÉC, Jorge W, Sereno JRB. Cytogenetic and molecular analysis of the Pantaneiro cattle breed. Pesqui Agropecu Bras. 2006;41(11):1609–15.

Genualdo V, Spalenza V, Perucatti A, Iannuzzi A, Di Meo GP, Caputi-Jambrenghi A, et al. Fluorescence in situ hybridization mapping of six loci containing genes involved in the dioxin metabolism of domestic bovids. J Appl Genet. 2011; 52(2):229–32.

Bugno-Poniewierska M, Sołek P, Potocki L, Pawlina K, Wnuk M, Jezewska-Witkowska G, et al. Polymorphism of cytogenetic markers in wild and farm red fox (Vulpes vulpes) populations. Folia Biol (Praha) [Internet]. 2013;61(3–4):155–63.
[Cited 2017 Dec 30]
Available:http://www.ncbi.nlm.nih.gov/pubmed/24279163

McPherson MC, Robinson CM, Gehlen LP, Delany ME. Comparative cytogenomics of poultry: Mapping of single gene and repeat loci in the Japanese quail (Coturnix japonica). Chromosom Res [Internet]. 2014;22(1):71–83.
[Cited 2017 Dec 30]
Available:http://www.ncbi.nlm.nih.gov/pubmed/24604153

Schmid M, Steinlein C. Chromosome banding in amphibia. XXXII. The Genus Xenopus (Anura, Pipidae). Cytogenet Genome Res [Internet]. 2015;145(3–4):201–17.
[Cited 2017 Apr 15]
Available:http://www.ncbi.nlm.nih.gov/pubmed/26112092

Sessions SK, Stöck M, Vieites DR, Quarles R, Min MS, Wake DB. Cytogenetic analysis of the Asian Plethodontid salamander, Karsenia koreana: Evidence for karyotypic conservation, chromosome repatterning, and genome size evolution. Chromosom Res. 2008;16(4):563–74.

McKinney S, Guerrero-Hernández C, Guo L, Gibson M, Accorsi A, Sivagnanam S, et al. An adaptable chromosome preparation methodology for use in invertebrate research organisms. BMC Biol [Internet]. 2018;16(1):25.
[Cited 2019 Mar 5]
Available:http://www.ncbi.nlm.nih.gov/pubmed/29482548

Zhao D, Liu S, Guo Z, Li R. [Application of eight-probe fluorescence in situ hybridization and R-banding karyotype analysis for the diagnosis of acute lymphoblastic leukemia]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi [Internet]. 2016;33(1):9–12.
[Cited 2019 Mar 13]
Available:http://www.ncbi.nlm.nih.gov/pubmed/26829724

Huang H, Chen J. Chromosome bandings. Methods Mol Biol [Internet]. 2017;1541:59–66.
[Cited 2019 Mar 13]
Available:http://www.ncbi.nlm.nih.gov/pubmed/27910014

Lindner LE. Improvements in the silver-staining technique for nucleolar organizer regions (AgNOR). J Histochem Cytochem. 1993;41(3):439–45.

Trerè D. AgNOR staining and quantifi-cation. Micron [Internet]. 2000;31(2):127–31.
[Cited 2019 Aug 22]
Available:http://www.ncbi.nlm.nih.gov/pubmed/10588058

Bukhari MH, Niazi S, Khan SA, Hashmi I, Perveen S, Qureshi SS, et al. Modified method of AgNOR staining for tissue and interpretation in histopathology. Int J Exp Pathol [Internet]. 2007;88(1):47–53.
[Cited 2019 Aug 22]

Available:http://www.ncbi.nlm.nih.gov/pubmed/17244338

Zheng JS, Sun CZ, Zhang SN, Hou XL, Bonnema G. Cytogenetic diversity of simple sequences repeats in morphotypes of Brassica rapa ssp. chinensis. Front Plant Sci [Internet]. 2016;7:1049.
[Cited 2019 Mar 5]
Available:http://www.ncbi.nlm.nih.gov/pubmed/27507974

Rubes J, Pinton A, Bonnet-Garnier A, Fillon V, Musilova P, Michalova K, et al. Fluorescence in situ hybridization applied to domestic animal cytogenetics. Cyto-genet Genome Res [Internet]. 2009; 126(1–2):34–48.

[Cited 2017 Dec 28]
Available:http://www.ncbi.nlm.nih.gov/pubmed/20016155

Artigas R, Iriarte A, Tellechea B, Llambí S, De Bethencourt M, Postiglioni A. Aphidicolin induces break points in heterozygous Robertsonian translocation rob(1;29) from Uruguayan Creole cattle: Brief post. BAG - J Basic Appl Genet. 2008;19(1):1–8.

McNeil N, Ried T. Novel molecular cytogenetic techniques for identifying complex chromosomal rearrangements: technology and applications in molecular medicine. Expert Rev Mol Med [Internet]. 2000;1–14.
Available:http://www.ncbi.nlm.nih.gov/pubmed/14585138

Hanada H. Robertsonian translocation and its effect on fertility in Japanese Black Cattle. Jarq. 1994;28(3):206–11.

Aricò A, Ferraresso S, Bresolin S, Marconato L, Comazzi S, Te Kronnie G, et al. Array-based comparative genomic hybridization analysis reveals chromosomal copy number aberrations associated with clinical outcome in canine diffuse large B-cell lymphoma. PLoS One [Internet]. 2014; 9(11):e111817.
[Cited 2019 Mar 5]
Available:http://www.ncbi.nlm.nih.gov/pubmed/25372838

Perucatti A, Iannuzzi A, Genualdo V, Incarnato D, Session P, Road M, et al. 21st International colloquium on animal cyto-genetics and gene mapping. Chromosom Res [Internet]. 2014;22(3): 393–437.
Available:http://link.springer.com/10.1007/s10577-014-9435-7

Tobergte DR, Curtis S. Fluorescence in situ Hybridization (FISH). Journal of Chemical Information and Modeling. 2013; 53:1689–1699.

Hayes H, Dutrillaux B, Popescu P. Preparation of chromosome spreads. In 2000;1–24.
[Cited 2017 Apr 15]
Available:http://link.springer.com/10.1007/978-3-642-59711-4_1

Geigl JB, Uhrig S, Speicher MR. Multiplex-fluorescence in situ hybridization for chromosome karyotyping. Nat Protoc [Internet]. 2006;1(3):1172–84.
[Cited 2019 Sep 4]
Available:http://www.ncbi.nlm.nih.gov/pubmed/17406400

Mateos-Langerak J, Bohn M, de Leeuw W, Giromus O, Manders EMM, Verschure PJ, et al. Spatially confined folding of chromatin in the interphase nucleus. Proc Natl Acad Sci [Internet]. 2009;106(10): 3812–7.
Available:http://www.pnas.org/cgi/doi/10.1073/pnas.0809501106

Ye Y, Xu C, Jin F, Qian Y. Identification of embryonic chromosomal abnormality using FISH-based preimplantation genetic diagnosis. J Zhejiang Univ Sci [Internet]. 2004;5(10):1249–54.
[Cited 2019 Sep 4]
Available:http://www.ncbi.nlm.nih.gov/pubmed/15362197

Lawce HJ. Chromosome stains. AGT Cytogenet Lab Man [Internet]. 2017;213-300.
Available:http://doi.wiley.com/10.1002/9781119061199.ch6

Mcneil N, Montagna C, Difilippantonio MJ, Ried T. Comparative cancer cytogenetics. Cancer. 2010;(Cml):1–22.

Bogdanovska-Todorovska M, Petrushevska G, Janevska V, Spasevska L, Kostadinova-Kunovska S. Standardization and optimization of fluorescence in situ hybridization (FISH) for HER-2 assessment in breast cancer: A single center experience. Bosn J basic Med Sci [Internet]. 2018;18(2):132–40.
[Cited 2019 Mar 5]
Available:http://www.ncbi.nlm.nih.gov/pubmed/29389309

Kearney L. Multiplex-FISH (M-FISH): technique, developments and applications. Cytogenet Genome Res. 2006;114:189–198.

Houldsworth J, Chaganti RS. Comparative genomic hybridization: an overview. Am J Pathol [Internet]. 1994;145(6):1253–60.
[Cited 2018 Sep 25]
Available:http://www.ncbi.nlm.nih.gov/pubmed/7992829

Yu W, Ballif BC, Kashork CD, Heilstedt HA, Howard LA, Cai WW, et al. Development of a comparative genomic hybridization microarray and demonstra-tion of its utility with 25 well-characterized 1p36 deletions. Hum Mol Genet. 2003; 12(17):2145–52.

Albertson DG, Pinkel D. Comparative genomic hybridization. Mol Oncol Causes Cancer Targets Treat. 2015;21–7.

Kowalska A, Bozsaky E, Ambros PF. Sequence-based high resolution chromo-somal comparative genomic hybridization (CGH). In 2010;299–312.
[Cited 2017 Apr 15]
Available:http://link.springer.com/10.1007/978-1-60761-789-1_23

Shemetun OV, Talan OA, Demchenko OM, Kurinnyi DA, Papuga MS, Pilinska MA. Frequency of spontaneous and radiation-induced chromosomal aberrations in peripheral blood lymphocytes of individuals of different ages. Cytol Genet [Internet]. 2018;52(6):461–6.
Available:http://link.springer.com/10.3103/S0095452718060117

Luzhna L, Kathiria P, Kovalchuk O. Micronuclei in genotoxicity assessment: From genetics to epigenetics and beyond. Front Genet. 2013;4:1–17.

Dixit M, Kumar A. Chapter 4 - In vitro gene genotoxicity test methods. In: Dhawan A, Kwon S, editors. In vitro Toxicology [Internet]. Academic Press. 2018;67–89.
Available:http://www.sciencedirect.com/science/article/pii/B9780128046678000043

Soto M, García-Santisteban I, Krenning L, Medema RH, Raaijmakers JA. Chromo-somes trapped in micronuclei are liable to segregation errors. J Cell Sci [Internet]. 2018;131(13).
[Cited 2019 Sep 3]
Available:http://www.ncbi.nlm.nih.gov/pubmed/29930083

Hayashi M. The micronucleus test-most widely used in vivo genotoxicity test. Genes Environ [Internet]. 2016;38(1):4–9.
Available:http://dx.doi.org/10.1186/s41021-016-0044-x

Oecd. OECD Test Guideline 487. 2014;1-26.
Available:https://ntp.niehs.nih.gov/iccvam/suppdocs/feddocs/oecd/oecd-tg487-2014-508.pdf

Darzynkiewicz Z, Smolewski P, Holden E, Luther E, Henriksen M, François M, et al. Laser scanning cytometry for automation of the micronucleus assay. Mutagenesis [Internet]. 2011;26(1):153–61.
[Cited 2019 Sep 3]
Available:http://www.ncbi.nlm.nih.gov/pubmed/21164197

Corvi R, Madia F. In vitro genotoxicity testing–can the performance be enhanced? Food Chem Toxicol [Internet]. 2017;106:600–8.
[Cited 2019 Sep 3]
Available:https://www.sciencedirect.com/science/article/pii/S0278691516302903

Morita T, MacGregor JT, Hayashi M. Micronucleus assays in rodent tissues other than bone marrow. Mutagenesis [Internet]. 2011;26(1):223–30.
[Cited 2019 Sep 3]
Available:https://academic.oup.com/mutage/article-lookup/doi/10.1093/mutage/ geq066

Hayashi M. In vivo rodent micronucleus assay. In: Chromosomal Alterations [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg. 2007;257–70.
[Cited 2019 Sep 3]
Available:http://link.springer.com/10.1007/978-3-540-71414-9_16

Kovac JR, Pastuszak AW, Lamb DJ. The use of genomics, proteomics, and metabolomics in identifying biomarkers of male infertility. In: Fertility and Sterility; 2013.

Aghamohammadi SZ, Henderson L, Cole RJ. The human lymphocyte micronucleus assay: Response of cord blood lympho-cytes to γ-irradiation and bleomycin. Mutat Res Mutagen Relat Subj [Internet]. 1984;130(6):395–401.
[Cited 2019 Sep 3]
Available:https://www.sciencedirect.com/science/article/pii/0165116184900116

Fenech M, Morley AA. Measurement of micronuclei in lymphocytes. Mutat Res Mutagen Relat Subj [Internet]. 1985; 147(1–2):29–36.
[Cited 2019 Sep 3]
Available:https://www.sciencedirect.com/science/article/pii/0165116185900159?imgSel=Y

Udroiu I, Sgura A. Cytogenetic tests for animal production: State of the art and perspectives. Anim Genet. 2017;48(5): 505–15.

Gomes NMV, Ryder OA, Houck ML, Charter SJ, Walker W, Forsyth NR, et al. Comparative biology of mammalian telomeres: Hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell [Internet]. 2011;10(5):761–8.
[Cited 2019 Mar 4]
Available:http://www.ncbi.nlm.nih.gov/pubmed/21518243

Alexander P. Sobinoff, Hilda A. Pickett. Alternative Lengthening of telomeres: DNA Repair pathways converge. Trends Genet [Internet]. 2017;33(12):921–32.
Available:http://dx.doi.org/10.1016/j.tig.2017.09.003

Bateson M. Cumulative stress in research animals: Telomere attrition as a biomarker in a welfare context? BioEssays. 2016; 38(2):201–12.

Yamakawa RH, Saito PK, Gelmini GF, da Silva JS, Bicalho M da G, Borelli SD. MICA diversity and linkage disequilibrium with HLA-B alleles in renal-transplant candidates in southern Brazil. Song Q, editor. PLoS One [Internet]. 2017;12(4):e0176072.
[Cited 2017 May 21]
Available:http://www.ncbi.nlm.nih.gov/pubmed/28419176

Von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002; 27(7):339–44.

Jenkins FJ, Kerr CM, Fouquerel E, Bovbjerg DH, Opresko PL. Modified terminal restriction fragment analysis for quantifying telomere length using in-gel hybridization. J Vis Exp [Internet]. 2017; 125.
[Cited 2019 Aug 22]
Available:http://www.ncbi.nlm.nih.gov/pubmed/28715381

Aubert G, Hills M, Lansdorp PM. Telomere length measurement—Caveats and a critical assessment of the available technologies and tools. Mutat Res Mol Mech Mutagen [Internet]. 2012;730(1–2):59–67.
[Cited 2019 Aug 22]
Available:https://www.sciencedirect.com/science/article/pii/S0027510711000868?via%3Dihub

Vozdova M, Ruiz-Herrera A, Fernandez J, Cernohorska H, Frohlich J, Sebestova HKS, RJ. Meiotic behaviour of evolutionary sex-autosome translocations in Bovidae. Chromosom Res. 2016;24:325–38.

Rothkamm K, Barnard S, Moquet J, Ellender MRZ. BRS. DNA damage foci: Meaning and significance. Environ Mol Mutagen. 2015;56:491–504.

Masuda Y, Takahashi H, Sato S, Tomomori-Sato C, Saraf A, Washburn MP, et al. TRIM29 regulates the assembly of DNA repair proteins into damaged chromatin. Nat Commun [Internet]. 2015;6:1–13.
Available:http://dx.doi.org/10.1038/ncomms8299

Berardinelli F, di Masi A, Salvatore M, Banerjee S, Myung K, De Villartay JP, et al. A case report of a patient with micro-cephaly, facial dysmorphism, chromosomal radiosensitivity and telomere length alterations closely resembling “Nijmegen breakage syndrome” phenotype. Eur J Med Genet. 2007;50(3):176–87.

Glei MST, SW. Comet assay: An essential tool in toxicological research. Arch Toxicol. 2016;90:2315–36.

Tice RR, Hartmann A, Sasaki YF, Rojas E, Anderson D, Miyamae Y, Agurell E, et al. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000;35(3): 206–21.

Gafter-Gvili A, Zingerman B, Rozen-Zvi B, Ori Y, Green H, Lubin I, et al. Oxidative stress-induced DNA damage and repair in human peripheral blood mononuclear cells: Protective role of hemoglobin. Maga G, editor. PLoS One [Internet]. 2013;8(7):e68341.
[Cited 2019 Mar 5]
Available:http://www.ncbi.nlm.nih.gov/pubmed/23874593

Picco SJ, Abba MC, Mattioli GA, Fazzio LE, Rosa DDLJC, DFN. Association between copper deficiency and DNA damage in cattle. Mutagenesis. 2004;19: 453–6.

Di Meo GP, Perucatti A, Genualdo V, Caputi-Jambrenghi A, Rasero RNC. Chromosome fragility in dairy cows exposed to dioxins and dioxin-like PCBs. Mutagenesis. 2011;26:269–72.

Picco S, Ponzzinibio MV, Mattioli G, Rosa D, Minatel L, Fazzio L, et al. Physiological and genotoxic effects of molybdenum-induced copper deficiency in cattle. Agrociencia. 2012;46(2):107–17.

Iannuzzi L, Perucatti A, Di Meo GP, Polimeno F, Ciotola F, Incarnato D, et al. Chromosome fragility in two sheep flocks exposed to dioxins during pasturage. Mutagenesis. 2004;19(5):355–9.

David J. Marlin, Lucy Johnson, Demelza A. Kingston, Nicola C. Smith, Chris M. Deaton, Sarah Mann, Paul Heaton, y Fenneke Van Vugt, Kelly Saunders, Julia Kydd and PAH. Application of the Comet assay for investigation of oxidative DNA damage in equine peripheral blood mononuclear cells. J Nutr. 2004;134(8): 2072S-2080S.