Side Differences in the Skull of Sheep: An Assessment by Geometric Morphometrics

Main Article Content

P. M. Parés-Casanova
A. Tolić
R. Carnicero

Abstract

Effects of perturbations during development can be due to environmental and/or genetic factors, resulting in increased developmental instability which in turn can be expressed as fluctuating asymmetry (FA), defined as the non-directional deviation (right-left differences) from bilateral symmetry. However, other asymmetry types can appear, such as and directional asymmetry (DA), characterized by a distribution skewed to one side (right or left) at the, which is originated as a response to external stimuli that affect differentially on both sides of the organism. In order to describe asymmetric patterns in the ovine skull, we studied 165 specimens from animals belonging to the sheep breed “Navarra” from North Spain, using geometric morphometric methods. On digital pictures, we analyzed two midline and 8 bilateral two-dimensional landmarks on skull dorsal aspect. Results showed that FA accounted for a reduced amount of total variation, while DA explained most of it. We suggest that the presence of side differences due to lateralized muscular function (mastication) is the most important factor in skull asymmetry. Obtained results should provide a basis for relating asymmetries to the mechanics of cranial skeletum in sheep.

Keywords:
Cranium, directional asymmetry, morphological variation, navarra sheep breed, Ovis.

Article Details

How to Cite
Parés-Casanova, P. M., Tolić, A., & Carnicero, R. (2020). Side Differences in the Skull of Sheep: An Assessment by Geometric Morphometrics. Annual Research & Review in Biology, 34(2), 1-7. https://doi.org/10.9734/arrb/2019/v34i230147
Section
Original Research Article

References

Graham JH, Raz S, Hel-Or H, Nevo E. Fluctuating asymmetry: Methods, theory, and applications. Symmetry. 2010;2:466–540.

Cocilovo JA, Varela HH, Quevedo S. La asimetría bilateral y la inestabilidad del desarrollo. Revista Argentina de Antropologia Biologica. 2006;8(1):121–44.

Graham John H, Carl Freeman D, John M. Emlen. Antisymmetry, directional asymmetry and dynamic morphogenesis. Genetica. 1993;89(1–3):121–37.

Klingenberg CP, Barluenga M, Meyer A. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution. 2002;56(10):1909–20.

Ludoški Jasmina, Marko Djurakic, Gunilla Ståhls, Vesna Milankov. Patterns of asymmetry in wing traits of three island and one continental population of merodon albifrons (Diptera, Syrphidae) from Greece. Evolutionary Ecology Research. 2012; 14(7):933–50.

Angelopoulou MV, Vlachou V,. Halazonetis DJ. Fluctuating molar asymmetry in relation to environmental radioactivity. Archives of Oral Biology. 2009;54(7):666–70.

Jordana J, Ribó O. Relaciones filogenéticas entre razas ovinas españolas obtenidas a partir del estudio de caracteres morfológicos. Investigación Agraria. 1991;6(3):225–36.

MAPAMA. Catálogo Oficial de Razas (ARCA). Ministerio de Agricultura y Pesca Alimentación y Medio Ambiente; 2014.
Available:http://www.mapama.gob.es/es/ganaderia/temas/zootecnia/
razas-ganaderas/razas/catalogo/peligro- extincion/equino-caballar/
caballo-pura-raza-gallega/default.aspx)

Rohlf FJ. The tps series of software. Hystrix. 2015;26(1):9–12.

Rohlf FJ. Digitalized landmarks and outlines. 2.26. New York: Stony Brook: Department of Ecology and Evolution, State University of New York; 2010.

Webster M, Sheets HD. A practical introduction to landmark-based geometric morphometrics in quantitative methods in paleobiology, edited by JA. and Hunt G. The Paleontological Society. 2010;163–88.

Klingenberg CP. Morpho J: An integrated software package for geometric morphometrics. Molecular Ecology Resources. 2011;11(2):353–57.

Hammer Ø, Harper DAT, Ryan PD. PAST v. 2.17c. Palaeontologia Electronica. 2001; 4(1):1–229.

Fruciano Carmelo. Measurement error in geometric morphometrics. Development Genes and Evolution. 2016;226(3):139–58.

Parés-Casanova PM. Existence of mandibular directional asymmetry in the european wild boar (Sus Scrofa Linnaeus, 1758). Journal of Morphological Sciences. 2014a;31(4):1–5.

Parés-Casanova PM. Size asymmetries in equine upper molar series. ECORFAN Journal. 2014b;5(13):2055–69.

Bartosiewicz L, Van Neer W, Lentacker A. Metapodial asymmetry in draft cattle. International Journal of Osteoarchaeology. 1993;3(2):69–75.

Laia RC, Pinto MP, Menezes VA, Rocha CFD. Asymmetry in reptiles: What do we know so far? Springer Science Reviews. 2015;3(1):13–26.

Bishop Chris, Paul Read, Chavda S, Turner AN. Asymmetries of the lower limb: The calculation conundrum in strength training and conditioning. Strenght and Conditioning Journal; 2016.

Del Castillo DL, Daniela L, Valentina Segura, David Flores ADA, Humberto LHL, Cappozzo. Cranial development and directional asymmetry in commerson’s dolphin, cephalorhynchus commersonii commersonii: 3D geometric morphometric approach. Journal of Mammalogy. 2016; 97(5):1345–54.

Gourso Charlotte, Sandra Düpjan, Birger Tuchscherer, Leliveld Lisette MC. “Behavioural lateralization in domestic pigs (Sus Scrofa)—Variations between motor functions and individuals. Laterality, Asymmetries of Brain, Behaviour and Cognition. 2018;23(5):576–98.

Hackert R, Maes LD, Herbin M, Libourel P A, Abourachid A. Limb preference in the gallop of dogs and the half-bound of pikas on flat ground. Laterality. 2008;13(4):310–19.

Carter AJR, Osborne E, Houle D. Heritability of directional asymmetry in drosophila melanogaster. International Journal of Evolutionary Biology. 2009;1–7.

Sisson, Septimus, James Daniels Grossman, Robert Getty. Anatomía de Los animales domésticos. Barcelona: Salvat Editores; 1982.

Kwiatkowska B, Borysławski K, Zawiasa J, Staszak K, Dabrowski P, Kurlej W. Dentition asymmetry in series of skulls from St. Mary Magdalene Church in wroclaw. in Fifth International Conference on Health, Wellness, and Society Health and Wellness in the Age of Big Data, edited by CG. Publishing. Madrid: Universidad de Alcalà. 2015;179–86.

Singleton Michelle. Functional geometric morphometric analysis of masticatory system ontogeny in papionin primates. Anatomical Record. 2015;298(1):48–63.

Zamanlu Masumeh, Saeed Khamnei, Shaker SalariLak, Siavash Savadi Oskoee, Seyed Kazem Shakouri, Yousef Houshyar, Yaghoub Salekzamani. Chewing side preference in first and all mastication cycles for hard and soft morsels. International Journal of Clinical and Experimental Medicine. 2012;5(4):326– 31.

Leśniak K. Directional asymmetry of facial and limb traits in horses and ponies. Veterinary Journal. 2018;198(1):46–51.

Boltze Johannes, Annette Förschler, Björn Nitzsche, Daniela Waldmin, Anke Hoffmann, Christiane M. Boltze, Antje Y. Dreyer, Axel Goldammer, Anne Reischauer, Wolfgang Härtig, Kathrin D. Geiger, Henryk Barthel, Frank Emmrich, and Uwe Gille. Permanent middle cerebral artery occlusion in sheep: A novel large animal model of focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism. 2008;28(12):1951–64.

Hoffmann Anke, Michael H. Stoffel, Bjorn Nitzsche, Donald Lobsien, Johannes Seeger, Holm Schneider, and Johannes Boltze. The ovine cerebral venous system: Comparative anatomy, visualization and implications for translational research. PLoS ONE. 2014;9(4).

Nitzsche Björn, Stephen Frey, Louis D. Collins, Johannes Seeger, Donald Lobsien, Antje Dreyer, Holger Kirsten, Michael H. Stoffel, Vladimir S. Fonov, Johannes Boltze. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes. Frontiers in Neuroanatomy. 2015;1–14.