Effects of Mesenchymal Stem Cells and Their Derived Microvesicles on Pulmonary Toxicity Induced by Petrol Exhaust Nanoparticle; Histological and Immuno-Histochemical Study

Main Article Content

Sherifa Abd El Salam
Eman Mohamed Faruk
Hanan Fouad
Naglaa Yehia Nafie


Background: Diesel vehicles exhaust contains toxic nanoparticles that drastically affect lung tissue due to their direct cytotoxic effects, induction of oxidative stress, inflammatory signaling pathways and DNA damage. Mesenchymal stem cells (MSCs) exhibit anti-inflammatory effects and efficient regenerative capacity in chronic lung diseases. 

Objectives: Evaluation of the effects of MSCs and MSCs-derived micro vesicles (MSCs-MVs) on pulmonary toxicity induced by diesel exhaust nanoparticles (DENPs).

Materials and Methods: Sixty male rats were equally divided into: Group I (Control rats), Group II (DENPs group) received repeated doses of DENPs (180μg/rat) intratracheally every other day for 6 days, Group III (MSCs group) received MSCs intravenously (3×106 cells) after the last dose of DENPs and Group IV (MSCs-MVs group) received MSCs-MVs (0.5 mg/mL) intravenously after the last dose of DENPs. Lung tissue were subjected to histological and immunohistochemical assessment. Inflammatory cytokines and bronchoalveolar lavage fluid (BALF) contents of inflammatory cells, albumin, LDH and total proteins were evaluated.

Results: Histological picture of lung tissue in DENPs group showed numerous collapsed alveoli, thick interalveolar septa and marked cellular infiltration. Elastic fibers were markedly decreased by DENPs. Increased optical density of NF-κB/p65 immunoreactivity. Bronchoalveolar lavage fluid showed significant elevation of inflammatory cytokines (TNF-a, IL-6), polymorphonuclear leukocytes (PMN), neutrophils, macrophages, LDH, total proteins and albumin. Treatment with either MSCs or MSCs-MVs led to a significant amelioration of all of the aforementioned studied parameters.

Conclusion: MSCs-MVs and MSCs showed significant therapeutic effects against DENPs damaging effects on the lung tissues via their regenerative capacity and anti-inflammatory effects.

Diesel exhaust nanoparticles, MSCs, pulmonary toxicity, microvesicles.

Article Details

How to Cite
El Salam, S., Faruk, E., Fouad, H., & Nafie, N. (2019). Effects of Mesenchymal Stem Cells and Their Derived Microvesicles on Pulmonary Toxicity Induced by Petrol Exhaust Nanoparticle; Histological and Immuno-Histochemical Study. Annual Research & Review in Biology, 31(6), 1-14. https://doi.org/10.9734/arrb/2019/v31i630070
Original Research Article


Khalek IA, Bougher TL, Merritt PM, Zielinska B. Regulated and unregulated emissions from highway heavy-duty diesel engines complying with U.S. Environ-mental Protection Agency 2007 emissions standards. J Air Waste Manag Assoc. 2011;61(4):427-42.
[PubMed] [Ref list] PMID: 21516938

Steiner S, Bisig C, Petri-Fink A, Rothen-Rutishauser B. Diesel exhaust: Current knowledge of adverse effects and underlying cellular mechanisms. Arch Toxicol. 2016;90(7):1541–1553
DOI: 10.1007/s00204-016-1736-5 [PMID: 27165416]

Abderrahim Nemmar, Priya Yuvaraju, Sumaya Beegam, Mohamed A. Fahim, Badreldin H. Ali. Cerium oxide nanoparticles in lung acutely induce oxidative stress, inflammation, and DNA damage in various organs of mice. Oxid Med Cell Longev. 2017;9639035.
DOI: 10.1155/2017/9639035 [PMCID: PMC5368370. PMID: 28392888]

Samantha J. Snow, John McGee, Desinia B. Miller, Virginia Bass, Mette C. Schladweiler, Ronald F. Thomas, Todd Krantz, Charly King, Allen D. Ledbetter, Judy Richards, Jason P. Weinstein, Teri Conner, Robert Willis, William P. Linak, David Nash, Charles E. Wood, Susan A. Elmore, James P. Morrison, Crystal L. Johnson, Matthew Ian Gilmour, Urmila P. Kodavanti. Inhaled diesel emissions generated with cerium oxide nanoparticle fuel additive induce adverse pulmonary and systemic effects. Toxicol Sci. 2014; 142(2):403–417. DOI: 10.1093/toxsci/kfu187

Abdelmawgoud H, Saleh A. Anti-inflammatory and antioxidant effects of mesenchymal and hematopoietic stem cells in a rheumatoid arthritis rat model. Adv Clin Exp Med. 2018;27(7):873-880.
DOI: 10.17219/acem/73720

Shi H, Liang M, Chen W, Sun X, Wang X, Li C, Yang Y, Yang Z, Zeng W. Human induced pluripotent stem cell derived mesenchymal stem cells alleviate athero-sclerosis by modulating inflammatory responses. Mol Med Rep. 2018;17(1): 1461-1468.
DOI: 10.3892/mmr.2017.8075

Mao F, Tu Q, Wang L, Chu F, Li X, Li HS, Xu W. Mesenchymal stem cells and their therapeutic applications in inflammatory bowel disease. Oncotarget. 2017;8(23): 38008-38021.
DOI: 10.18632/oncotarget.16682

Shin TH, Kim HS, Choi SW, Kang KS. Mesenchymal stem cell therapy for inflammatory skin diseases: Clinical Potential and Mode of Action. Int J Mol Sci. 2017;18(2).
DOI: 10.3390/ijms18020244

Sun L, Akiyama K, Zhang H, Yamaza T, Hou Y, Zhao S, Xu T, Le A, Shi S. Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells. 2009;27:1421–1432.
DOI: 10.1002/stem.68

Robert Y. L. Tsai. Balancing self-renewal against genome preservation in stem cells: How to have the cake and eat it too? Cell Mol Life Sci. 2016;73(9):1803–1823.
DOI: 10.1007/s00018-016-2152-y [PMCID: PMC5040593]

Nagaria P, Robert C, Rassool FV. DNA double-strand break response in stem cells: Mechanisms to maintain genomic integrity. Biochim Biophys Acta. 2013; 1830(2):2345–2353.
DOI: 10.1016/j.bbagen.2012.09.001

Mandal PK, Blanpain C, Rossi DJ. DNA damage response in adult stem cells: Pathways and consequences. Nat Rev Mol Cell Biol. 2011;12(3):198–202.
DOI: 10.1038/nrm3060

Kowalska M, Wegierek-Ciuk A, Brzoska K, Wojewodzka M, Meczynska-Wielgosz S, Gromadzka-Ostrowska J, Mruk R, Øvrevik J, Kruszewski M, Lankoff A. Genotoxic potential of diesel exhaust particles from the combustion of first- and second-generation biodiesel fuels—The Fuel Health project. Environ Sci Pollut Res Int. 2017; 24(31):24223–24234.
DOI: 10.1007/s11356-017-9995-0

Fujita Y, Yoshioka Y, Ochiya T. Extracellular vesicle transfer of cancer pathogenic components. Cancer Sci. 2016; 107:385–390.
[Cross Ref] [PubMed]

Witwer KW, Buzas EI, Bemis LT, Bora A, Lasser C, Lotvall J, Nolte-’t Hoen EN, Piper MG, Sivaraman S, Skog J, et al. Standardization of sample collection, isolation and analysis methods inextra-cellular vesicle research. J. Extracell. Vesicles. 2013;2:20360.
[CrossRef] [PubMed]

Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles. 2015;4:27066.

Durga M, Nathiya S, Devasena T. Protective role of fenugreek leaf extract and Quercetin against petrol exhaust nanoparticle induced lipid peroxidation and oxidative stress in rat erythrocytes in vitro. Asian J Pharm Clin Res. 2015;8(1):237-241.

Baghaei K, Hashemi SM, Tokhanbigli S, Asadi Rad A, Assadzadeh-Aghdaei H, Sharifian A, Zali MR. Isolation, differentia-tion, and characterization of mesenchymal stem cells from human bone marrow. Gastroenterol Hepatol Bed Bench. 2017; 10(3):208-213.
[PMCID: PMC5660271]

Gorgun C, Reverberi D, Rotta G, Villa F, Quarto R, Tasso R. Isolation and flow cytometry characterization of extracellular-vesicle subpopulations derived from human mesenchymal stromal cells. Curr Protoc Stem Cell Biol. 2019;48:e76.
[PMID: 30624011]
DOI: 10.1002/cpsc.76

Nassar W, El-Ansary M, Sabry D, et al. Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomater Res 2016;20: 21.
[PMCID: PMC4974791]
DOI: 10.1186/s40824-016-0068-0

Faruk EM, El-desoky RE, Al-Shazly AM, Taha NM. Does exosomes derived bone marrow mesenchymal stem cells restore ovarian function by promoting stem cell survival on experimentally induced polycystic ovary in adult female albino rats? (Histological and immunohisto-chemical study). Stem Cell Res Ther. 2018;8:442.
DOI: 10.4172/2157-7633.1000442

Alturkistani HA, Tashkandi FM, Mohammedsaleh ZM. Histological stains: a literature review and case study. Glob J Health Sci. 2016;8(3):72–79.
DOI: 10.5539/gjhs.v8n3p72

Bancroft JD, Layton C. The hematoxylin and eosin. In: Suvarna SK, Layton C, Bancroft JD, editors. Theory practice of histological techniques. 7th ed. Ch. 10 and 11. Philadelphia: Churchill Livingstone of El Sevier. 2013;179–220.

Collins AM, Rylance J, Wootton DG, Wright AD, Wright AK, Fullerton DG, Gordon SB. Bronchoalveolar lavage (BAL) for research. Obtaining adequate sample yield. J Vis Exp. 2014;85.
DOI: 10.3791/4345

Oyabu T, Myojo T, Lee BW, Okada T, Izumi H, Yoshiura Y, Tomonaga T, Li YS, Kawai K, Shimada M, Kubo M, Yamamoto K, Kawaguchi K, Sasaki T, Morimoto Y. Biopersistence of NiO and TiO2 nano-particles following intratracheal instillation and inhalation. Int J Mol Sci. 2017;18(12): 2757.
DOI: 10.3390/ijms18122757

Bradford M. A rapid and sensitive method for the quantitation of microgram quatities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976; 72(1-2):248-254.

Durga M, Nathiya S, Rajasekar A, Devasena T. Effects of ultrafine petrol exhaust particles on cytotoxicity, oxidative stress generation, DNA damage and inflammation in human A549 lung cells and murine RAW 264.7 macrophages. Environ Toxicol Pharmacol. 2014;38(2):518-30.

Yetuk G, Pandir D, Bas H. Protective role of catechin and quercetin in sodium benzoate-induced lipid peroxidation and the antioxidant system in human erythrocytes in vitro. Scientific World Journal. 2014;874824.

Jennifer A. Bartlett, Matthew E. Albertolle, Christine Wohlford-Lenane, Alejandro A. Pezzulo, Joseph Zabner, Richard K. Niles, Susan J. Fisher, Paul B. McCray, Jr., Katherine E. Williams. protein composition of bronchoalveolar lavage fluid and airway surface liquid from newborn pigs. Am J Physiol Lung Cell Mol Physiol. 2013; 305(3):L256–L266.
DOI: 10.1152/ajplung.00056.2013

Samantha JS, John M, Desinia B, Virginia B, Mette C, et al. Inhaled diesel emissions generated with cerium oxide nanoparticle fuel additive induce adverse pulmonary and systemic effects. Toxicological Sciences. 2014;142:2.

Pérez L, Muñoz-Durango N, Riedel CA, Echeverría C, Kalergis AM, Cabello-Verrugio C, Simon F. Endothelial-to-mesenchymal transition: Cytokine-mediated pathways that determine endothelial fibrosis under inflammatory conditions. Cytokine Growth Factor Rev. 2017;33:41-54.
DOI: 10.1016/j.cytogfr.2016.09.002

Ma JY, Mercer RR, Barger M, Schwegler-Berry D, Scabilloni J, Ma JK, Castranova V. Induction of pulmonary fibrosis by cerium oxide nanoparticles. Toxicol Appl Pharmacol. 2012;262(3):255-64.
DOI: 10.1016/j.taap.2012.05.005

Willis GR, Fernandez-Gonzalez A, Anastas J, Vitali SH, Liu X, Ericsson M, Kwong A, Mitsialis SA, Kourembanas S. Mesen-chymal stromal cell ameliorates experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med. 2018;197(1):104-116.
DOI: 10.1164/rccm.201705-0925OC

Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 2017;35:851–858.
[CrossRef] [PubMed]

Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J. Mol. Med. (Berl.). 2014;92:387–397.
[CrossRef] [PubMed]

Faruk EM, El Mansy A, Alasmari WAM, Elshazly AME. The possible protective role of quercetin on induced cardiac oxidative DNA damage by repeated exposure to diesel exhaust nanoparticles in rats (a histological and immunohistochemical study). J Histol Histopathol. 2018;5(2).
DOI: 10.7243/2055-091X-5-2

Rezaie Z, Ardeshirylajimi A, Ashkezari MD, Seifati SM. Antitumoral potential of micro-vesicles extracted from human adipose-derived mesenchymal stem cells on human breast cancer cells. J Can Res Ther. 2019;2:234-238.