Some Effects of Sound and Music on Organisms and Cells: A Review
Annual Research & Review in Biology,
Page 1-12
DOI:
10.9734/arrb/2019/v32i230080
Abstract
In animals, the sound vibrations are captured by the auditory cells, then transformed into electrical signals and conveyed to the nervous centers where they can be interpreted such as music. A lot of studies concern the effect of sound on the auditory cells and on the brain. Nevertheless, musical vibrations also affect other cells types in several organisms. These researches being not of the same nature, they need to be classified in order to provide elements of understanding the effects of music on cell biology. A lot of works were done on the effects of music on non-auditory cells. Effects on growth, apoptosis, immune system, protein activities in animal, plant and bacterial cells have been shown. These effects are of a physiological nature and require molecules and physicochemical mechanisms. Some works were performed on vegetal or animal total organisms, others directly on cells themselves, using cell cultures. Few works concern eukaryotic unicellular organisms. Results of these studies show music and sound exert effects on the physiology. But the experiments and results are still well disparate, with effects of different types of music on organisms via auditory on non-auditory cells, sometimes involving both auditory and non-auditory cells. Whatever the large variation of results, the study of the effects of sound and especially music on the cells is a subject on the future, considering the immense possibilities offered by music in modulating physiology, with potential therapeutic applications.
Keywords:
- Sound
- music
- auditory cell
- non-auditory cell
- plant
- animal
- unicellular organism
How to Cite
References
Available:https://doi.org/10.1002/cphy.c160049
Blood AJ, Zatorre R. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. PNAS. 2001;98:11818-11823.
Gosselin N, Samson S, Adolphs R, Noulhiane M, Roy M, Hasboun D, et al. Emotional responses to unpleasant music correlates with damage to the parahippocampal cortex. Brain. 2006;129: 2585-2592.
Khalfa S, Guye M, Peretz I, Chapon F, Girard N, Chauvel P, et al. Evidence of lateralized anteromedial temporal structures involvement in musical emotion processing. Neuropsychologia. 2008; 46(10):2485-2493.
Available:https://doi.org/10.1016/j.neuropsychologia.2008.04.009
Galaal KA, Deane K, Sangal S, Lopes AD. Interventions for reducing anxiety in women undergoing colposcopy. Cochrane Database Syst Rev. 2007;18(3): CD006013.
Gangrade A. The effect of music on the production of neurotransmitters, hormones, cytokines, and peptides: A review. Music and Medicine. 2012;4(1):40-43.
Mishra RC, Ghosh R, Bae H. Plant acoustics: in the search of a sound mechanism for sound signaling in plants. J Exp Bot. 2016;67(15):4483-4494.
Available:https://doi.org/10.1093/jxb/erw235
Vicient CM. The effect of frequency-specific sound signals on the germination of maize seeds. BMC Research Notes. 2017;10:323
Available:https://doi.org/10.1186/s13104-017-2643-4
Choi B, Ghosh R, Gururani MA et al. Positive regulatory role of sound vibration treatment in Arabidopsis thaliana against Botrytis cinerea infection. Scientific Reports. 2017;7:2527.
Lopez-Ribera I, Vicient CM. Drought tolerance induced by sound in Arabidopsis plants. Plant Signal Behav. 2017;12(10): e1368938.
Available:https://doi.org/10.1080/15592324.2017.1368938
De Luca PA, Vallejo-Marin M. What’s the ‘buzz’ about? The ecology and evolutionary significance of buzz pollination. Curr Opin Plant Biol. 2013; 16(4):429-435.
Available:https://doi.org/10.1016/j.pbi.2013.05.002
Schöner MG, Simon R, Schöner CR. Acoustic communication in plant-animal interactions. Curr Opin Plant Biol. 2016;32: 88-95.
Available:https://doi.org/10.1016/j.pbi.2016.06.011
Qin YC, Lee WC, Choi YC, Kim TW. Biochemical and physiological changes in plants as a result of different sonic exposures. Ultrasonics. 2003;41(5):407-411.
Hongbo S, Biao L, Bochu W, Kun T, Yilong L. A study on differentially expressed gene screening of Chrysanthemum plants under sound stress. C R Biol. 2008;331(5):329-333.
Available:https://doi.org/10.1016/j.crvi.2008.02.007
Mortazavian AM. Music affects survival and activity of microorganisms. J. Paramedical Sci. 2012;3.
Shaobin G, Wu Y, Li K, Ma S, Wang Q, Wang R. A Pilot study of the effect of audible sound on the growth of Escherichia coli. Colloids Surf B: Biointerfaces. 2010; 78(2):367-371.
Niral Sarvaiya, Vijay Kothari. Effect of audible sound in form of music on microbial growth and production of certain important metabolites. Microbiology. 2015; 84(2):227–235.
Ayan I, Aslan G, Cömelekoğlu U, Yilmaz N, Colak M. The effect of low intensity pulsed sound waves delivered by the exogen device on Staphylococcus aureus morphology and genetics. (In Turkish) Acta Orthop Traumatol Turc. 2008;42(4):272-277.
Norris V, Hyland, GJ. Do bacteria sing? Sonic intercellular communication between bacteria may reflect electromagnetic intracellular communication involving coherent collective vibrational modes that could integrate enzyme activities and gene expression. Mol Microbiol. 1997;24:879-980.
Matsuhashi M, Pankrushina AN, Takeuchi S, Ohshima H, Miyoi H, Endoh K, et al. Production of sound waves by bacterial cells and the response of bacterial cells to sound. J Gen Appl Microbiol. 1998;44(1): 49-55.
Zimmermann U, Fermin C. Shape deformation of the organ of Corti associated with length changes of outer hair cell. Acta Otolaryngol. 1996;116(3): 395-400.
Fettiplace R, Hackney CM. The sensory and motor roles of auditory hair cells. Nature Neuroscience. 2006;7(1):19–29.
Available:https://doi.org/10.1038/nrn1828
Chan DK, Hudspeth AJ Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nature Neuroscience. 2005;8(2):149–155.
Available:https://doi.org/10.1038/nn1385.
Ashmore J. Cochlear outer hair cell motility. Physiol Rev. 2008;88(1):173– 210.
Available:https://doi.org/10.1152/physrev.00044.2006
Müller, U Cadherins and mechanotransduction by hair cells. Curr Op Cell Biol. 2008;20(5):557–566. Available:https://doi.org/10.1016/j.ceb.2008.06.004.
PMC: 2692626.
Rabbitt RD, Boyle R, Highstein SM. Mechanical amplification by hair cells in the semicircular canals. PNAS. 2010; 107(8):3864–3869.
Available:https://doi.org/10.1073/pnas.0906765107
Lestard NR, Valente RC, Lopes AG, Capella MA. Direct effects of music in non-auditory cells in culture. Noise Health. 2013;15(66):307-314.
Available:https://doi.10.4103/1463-1741.116568
Lestard NR, Capella MA. Exposure to music alters cell viability and cell motility of human non auditory cells in culture. Evidence-Based Compl Alt Med; 2016. Art. ID 6849473:7 p.
Available:https://doi.org/10.1155/2016/6849473
Hallam S. The power of music: a research synthesis of the impact of actively making music on the intellectual, social and personal development of children and young people iMerc: Sitra, Kingdom of Bahrain; 2015.
Thoma MV, La Marca R, Brönnimann R, Finkel L, Ehlert U, Ntaer UM.The effect of music on the human stress response. PLoS ONE. 2013;8(8):e70156.
Available:https://doi.org/10.1371/journal.pone.0070156
Stefano GB, Zhu W, Cadet P, Salamon E, Mantione KJ. Music alters constitutively expressed opiate and cytokine processes in listeners. Med Sci Monit. 2004;10(6): 18-27.
Dávila SG, Campo JL, Gil MG, Prieto MT, Torres O. Effects of auditory and physical enrichment on 3 measurements of fear and stress (tonic immobility duration, heterophil to lymphocyte ratio, and fluctuating asymmetry) in several breeds of layer chicks. Poult Sci. 2011;90(11):2459-2466.
Available:https://doi.org/10.3382/ps.2011-01595
Bonzom, JM. L'asymétrie fluctuante un biomarqueur morphométrique pour évaluer la qualité de l'environnement. PhD, Univ. Sherbrook, Canada. SavoirUdeS. 1999.
Available:https://savoirs.usherbrooke.ca/handle/11143/4992
FukuiI H, Toyoshima AK. Music facilitates the neurogenesis, regeneration and repair of neurons. Med Hypotheses. 2008; 71(5):765-769.
Available:https://doi.org/10.1016/j.mehy.2008.06.019
Kim H, Lee MH, Chang HK, Lee TH, Lee HH, Shin MC, et al. Influence of prenatal noise and music on the spatial memory and neurogenesis in the hippocampus of developing rats. Brain Dev. 2006;28(2):09-114.
Epub 2005 Sep 21.
Wadhwa S, Anand P, Bhowmick D. Quantitative study of plasticity in the auditory nuclei of chick under conditions of prenatal sound attenuation and overstimulation with species specific and music sound stimuli. Int J Dev Neurosci. 1999;17(3):239-253.
Alladi PA, Roy T, Singh N, Wadhwa S. Prenatal auditory enrichment with species-specific calls and sitar music modulates expression of Bcl-2 and Bax to alter programmed cell death in developing chick auditory nuclei. Int J Dev Neurosci. 2005; 23(4):363-373.
Exbrayat JM, Moudilou EN, Abrouk L, Brun C. Apoptosis in amphibian development. Advances in Bioscience and Biotechnology. 2012;2012(3):669-678.
Available:https://doi.org/10.4236/abb.2012.326087
Kirste I, Nicola Z, Kronenberg G, Walker TL, Liu RC, Kempermann G. Is silence golden? Effects of auditory stimuli and their absence on adult hippocampal neurogenesis. Brain Struct Funct. 2015; 220(2):1221-1228.
Available:https://doi.org/10.1007/s00429-013-0679-3
Sanyal T, Kumar V, Nag TC, Jain S, Sreenivas V, Wadhwa S. Prenatal loud music and noise: differential impact on physiological arousal, hippocampal synaptogenesis and spatial behavior in one-day-old chicks. PLoS One. 2013;8(7): e67347.
Available:https://doi.org/10.1371/journal.pone.0067347
Sanyal T, Palanisamy P, Nag TC, Roy TS, Wadhwa S. Effect of prenatal loud music and noise on total number of neurons and glia, neuronal nuclear area and volume of chick brainstem auditory nuclei, field L and hippocampus: a stereological investigation. Int J Dev Neurosci. 2013;31(4):234- 244.
Available:https://doi.org/10.1016/j.ijdevneu.2013.02.004
Panicker H, Wadhwa S, Roy TS. Effect of prenatal sound stimulation on medio-rostral neostriatum/hyperstriatum ventral region of chick forebrain: A morphometric and immunohistochemical study. J Chem Neuroanat. 2002;24(2):127-135.
Lopez-Teijón M, Castelló C, Asencio M, Fernández P, Farreras A, Rovira S et al., Improvement of fertilization rates of in vitro cultured human embryos by exposure to sound vibrations. Journal of Fertilization: In vitro - IVF-Worldwide, Reproductive Medicine, Gen Stem Cell Biol. 2015;3(4): 1000160.
Available:https://doi.org/10.4172/2375-4508.100016
Hasegawa Y, Kubota N, Inagaki T, Shinagawa N. Music therapy induced alternations in natural killer cell count and function. (in Japanese) Nihon Ronen Igakkai Zasshi. 2001;38(2):201-204.
Bittman BB, Berk LS, Felten DL, Westengard J, Simonton OC, Pappas J et al. Composite effects of group drumming music therapy on modulation of neuroendocrine-immune parameters in normal subjects. Altern Ther Health Med. 2001;7(1):38-47.
Hirokawa E, Ohira H. The effects of music listening after a stressful task on immune functions, neuroendocrine responses, and emotional states in college students. J Music Ther. 2003;40(3):189-211.
Wachi M, Koyama M, Utsuyama M, Bittman BB, Kitagawa M, Hirokawa K. Recreational music-making modulates natural killer cell activity, cytokines, and mood states in corporate employees. Med Sci Monit. 2007;13(2):CR57-70.
Lu SY, Peng GY, Gu LG, Li ZM, Yin SJ. Effect and mechanisms of gong-tone music on the immunological function in rats with Liver (Gan)-qi depression and Spleen (Pi)-qi deficiency syndrome in rats. Chin J Integr Med. 2013;19(3):212-216.
Available:https://doi.org/10.1007/s11655-011-0946-1
Lu Y, Liu M, Shi S, Jiang H, Yang L, Liu X et al. Effects of stress in early life on immune functions in rats with asthma and the effects of music therapy. J Asthma. 2010;47(5):526-531. Available:https://doi.org/10.3109/02770901003801964
Nuñez MJ, Maña P, Liñares D, Riveiro MP, Balboa J, Suarez-Quintanilla J et al. Music, immunity and cancer. Life Sci. 2002;71(9): 1047-1057.
Liao P. Mozart may prevent heart transplant rejection: discovery wins Harvard University's Ig Nobel 2013 prize in medicine. Nat Med J India. 2013;26(6): 381.
Uchiyama M, Jin X, Zhang Q, Amano A, Bashuda H, Niimi N. Auditory stimulation of opera music induced prolongation of murine cardiac allograft survival and maintained generation of regulatory CD4+CD25+ cells. J Cardiothor Surg. 2012;7(1):26.
Uchiyama M, Jin X, Zhang Q, Amano A, Watanabe T. Niimi M. Music exposure induced prolongation of cardiac allograft survival and generated regulatory CD4⁺ cells in mice. Transplant Proc. 2012;44 (4):1076-1079.
Available:https://doi.org/10.1016/j.transproceed.2012.02.008
Erken G, Bor Kucukatay M, Erken HA, Kursunluoglu R, Genc O. Influence of classical and rock music on red blood cell rheological properties in rats. Med Sci Monit. 2008;14(1):BR 28-33.
Albanese A, Battisti E, Vannoni D, Acetoi E, Galassi G, Giglioni S, Tommassini V, Giordano N. Alterations in adenylate kinase activity in human PBMCs after in vitro exposure to electromagnetic field: comparison between extremely low frequency electromagnetic field (ELF) and therapeutic application of a musically modulated electromagnetic field (TAMMEF). J Biomed. Biotechnol. 2009; 717941.
Available:https://doi.org/10.1155/2009/717941
Corallo C, Volpi N, Franci D, Vannoni D, Leoncini R, Landi G, Guarna M, Montella A, Albanese A, Battisti E, Fioravanti A, Nuti R, Giordano N. Human osteoarthritic chondrocytes exposed to extremely low-frequency electromagnetic fields (ELF) and therapeutic application of musically modulated electromagnetic fields (TAMMEF) systems: A comparative study. Rheumatol Int. 2013;33(6):1567-1575.
Available:https://doi.org/10.1007/s00296-012-2600-4
Corallo C, Battisti E, Albanese A, Vannoni D, Leoncini R, Landi G, Gagliardi A, Landi C, Carta S, Nuti R, Giordano N. Proteomics of human primary osteoarthritic chondrocytes exposed to extremely low-frequency electromagnetic fields (ELF EMFs) and to therapeutic application of musically modulated electromagnetic fields (TAMMEF). Electromagn Biol Med. 2014; 33 (1):3-10.
Available:https://doi.org/10.3109/15368378.2013.782316
Vannoni D, Albanese A, Battisti E, Aceto E, Giglioni S, Corallo C, Carta S, Ferrata P, Fioravanti A, Giordano N.2012. In vitro exposure of human osteoarthritic chondrocytes to ELF fields and new therapeutic application of musically modulated electromagnetic fields: biological evidence. J Biol Regul Homeost Agents. 2012;26(1):39-49.
Clark WW. Noise exposure from leisure activities: A review. J Acoust Soc Am. 1991;90(1):175-181.
Aydin MU, Ungoren MK, Aydin N, Halici Z, Onder A, Gundogdu C, Izci Y. The effects of impulse noise on the epithelial cells of the choroid plexus. Turk Neurosurg. 2011; 21(2):191-196.
McCarthy DO, Ouimet ME, Daun JM. The effects of noise stress on leukocyte function in rats. Res Nurs Health. 1992; 15(2):131-137.
Nelson A, Hartl W, Jauch KW, Fricchione GL, Benson H, Warshaw AL, Conrad C. The impact of music on hypermetabolism in critical illness. Curr Opin Clin Nutr Metab Care. 2008;11(6):790-794.
Available:https://doi.org/10.1097/MCO.0b013e328314dd01
Rauscher FH, Shaw GL, Ky CN. Music and spatial task performance. Nature. 1993; 365(6447):611.
Pauwels EK, Volterrani D, Mariani G, Kostkiewics M. Mozart, music and medicine. Med Princ Pract. 2014;23(5): 403-412.
Available:https://doi.org/10.1159/000364873
Russo C, Russo A, Gulino R, Pellitteri R, Stanzani S. Effects of different musical frequencies on NPY and Ghrelin secretion in the rat hypothalamus. Brain Res Bull. 2017;132:204-212.
Available:https://doi.org/10.1016/j.brainresbull.2017.06.002
Nakamura T, Tanida M, Niijima A, Hibino H, Shen J, Nagai K. Auditory stimulation affects renal sympathetic nerve activity and blood pressure in rats. Neurosci Lett. 2007;416(2):107-12.
Nakamura T, Tanida M, Niijima A, Nagai K. Effect of auditory stimulation on parasympathetic nerve activity in urethane-anesthetized rats. In vivo. 2009;23(3):415-419.
Oikkonen J, Onkamo P, Järvelä I, Kanduri C. Convergent evidence for the molecular basis of musical traits. Sci Rep. 2016; 6:39707.
Available:https://doi.org/10.1038/srep39707
Fukui H, Toyoshima K. Music increase altruism through regulating the secretion of steroid hormones and peptides. Med Hypotheses. 2014;83(6):706-708.
Available:https://doi.org/10.1016/j.mehy.2014.09.023
Dóro CA, Neto JZ, Cunha R, Dóro MP. Music therapy improves the mood of patients undergoing hematopoietic stem cells transplantation (controlled randomized study). Support Care Cancer. 2017;25(3):1013-1018.
Available:https://doi.org/10.1007/s00520-016-3529-z
Gao J, Chen S, Lin S, Han H. Effect of music therapy on pain behaviors in rats with bone cancer pain. J BUON. 2016; 21(2):466-472.
-
Abstract View: 9248 times
PDF Download: 6454 times