The Moroccan Ichtyoplankton - A General Overview
Annual Research & Review in Biology,
Page 89-94
DOI:
10.9734/arrb/2020/v35i830263
Abstract
Morocco is one of the most important seafood producing countries. In consideration of its advantageous geographical location in addition to the biodiversity and richness that characterise these halieutic resources, the small pelagic fishes represent 75% of the halieutic harvest, with a domination of S. pilchardus. Regarding the sustainability and protection of the marine species, the study of ichthyoplankton is an essential and crucial step, through the use of classical identification techniques under binocular lenses combined with molecular biology tools based on genetic markers as well as an integrated image analysis system, the ZooScan. The present work is the subject of an overview of the study of ichthyoplankton on the two Atlantic and Mediterranean coasts of Morocco.
Keywords:
- Biodiversity
- ichtyoplankton
- classical identification
- genetic markers
- ZooScan.
How to Cite
References
Somoue L, Berraho A, Ettahiri O, Elkhiati N, Ramdani M, Makaoui A. et al. Le plancton (phytoplancton, zooplancton et ichtyoplancton) de la côte atlantique sud marocaine (Cap Boujdor-Cap Blanc). 2013;12.
Ettahiri O, Berraho A, Zizah S, Makaoui A, Orbi A. Ecologie, hydrodynamique et dipersion larvaire de la sardine Sardina pilchardus le long fe la côte atlantique sud marocaine. 2001;7.
Berraho A, Abdelouahab H, Charib S, Essarraj S, Larissi J, Christou ED. et al,Copepod community along the Mediterranean coast of Morocco (Southwestern Alboran Sea) during spring. Mediterr. Mar. Sci. 2016;17:661.
Abdelouahab H, Berraho A, Ramzi A, Ettahiri O, Errhif A, Tojo N. Mortality of early life stages of European pilchard Sardinapilchardus along the Atlantic Coast of Northwest Africa (22°30’N-26°N). Rev. Biol. Mar. Oceanogr. 2016;51:483–492.
Lakkis S. le zooplancton des eaux marines libanaises. 2013;565.
Wiebke J. Boeing , Janet T. Duffy-Anderson. Ichthyoplankton dynamics and biodiversity in the Gulf of Alaska: Responses to environmental change. Ecological indicators. 2008;8:292–302.
Fuiman LA, Werner RG. Fishery Science: The Unique Contributions of Early Life Stages.2002.
Pepin P. Effect of Temperature and size on development, mortality, and survival rates of the pelagic early life history stages of marine fish. Can. J. Fish. Aquat. Sci. 1991;48:503–518.
Pepin P. Death from near and far: alternate perspectives on size-dependent mortality in larval fish. ICES J. Mar. Sci. J. Cons. 2016;73:196–203.
Anderson JT. A Review of Size Dependent Survival During Pre-Recruit Stages of Fishes in Relation to Recruitment. 1988;8:12.
Garrido S, Ben-Hamadou R, Santos AMP, Ferreira S, Ré P. et al. Born small, die young: Intrinsic, size-selective mortality in marine larval fish. Sci. Rep. 2015,5:17065.
Mellinger PJ. La flottabilité des œufs de téléostéens. Année Biol. 199433.
Last J. The food of herring, Clupeaharengus, in the North Sea, 1983–1986. J. Fish Biol. 2006;34:489–501.
Béland F, Browman HI, Rodriguez CA, St-Pierre J-F. Effect of solar ultraviolet radiation (280–400 nm) on the eggs and larvae of Atlantic cod (Gadusmorhua). 1999;56:10.
Hempel G. Hempel Early Life History of Marine Fish: the Egg Stage, xvi, 70 pp. University of Washington Press, 1979. (Washington Sea Grant Publication.) Paperback only. Price £4•50/$7•50. J. Mar. Biol. Assoc. U. K. 1981;61:283–283.
Berraho A, Chbani M, Mesfioui A. Etude de l’ichtyoplancton des côtes atlantiques marocaines.1996.
Berraho A, Ettahiri O, Letourneur Y, Orbi A, Yahyaoui A. Importance des paramètres hydrologiques dans la distribution des œufs et des larves des petits pélagiques du sud de l’Atlantique marocain. 205;11.
Abdelouahab H, Berraho A, Baibai T, Agouzouk A, Errhif A. Autumn larval fish assemblages in the northwest African Atlantic coastal zone. Chin. J. Oceanol. Limnol. 2017;35:515–527.
Abdelouahab H, Berraho A, Ramzi A, Ettahiri O, Errhif A, Tojo N. Mortality of early life stages of European pilchard Sardinapilchardus along the Atlantic Coast of Northwest Africa (22°30’N-26°N). Rev. Biol. Mar. Oceanogr. 2016;51:483–492.
Baibai T, Abdelouahab H, Ettahiri O, Vázquez Q, Rey M, Soukri A. et al,Identificacióntaxonómica de colecciones de huevos y larvas de pecesmedianteanálisis de ADN. 2014;5.
Rodríguez JM, Alemany F, García A. A guide to the eggs and larvae of 100 common western Mediterranean Sea bony fish species. 2017;256.
Zarrad R, Abed AE, Missaoui H, M’Rabet R, Romdhane MS. Variabilite Mensuelle Du Zooplancton Et De L’ichtyoplancton Dans Le Golfe De Tunis. 2004;31:7.
Zarrad R, Abed AE, M’Rabet R, Missaoui, H. Distribution Spatiale De L’ichtyoplancton En Ete Et En Automne Et Conditions Environnementales Dans Le Golfe De Tunis. 2003;30:9.
Aceves G, Jimenez S, Saldierna R, Durazo R, Hinojosa A, Hernandez M, Gonzalez E, Gaxiola G. Distribution and abundance of the ichthyoplankton assemblages and its relationships with the geostrophic flow along the southern region of the California Current. Lat. Am. J. Aquat. Res. 2018;46:104–119.
Di Pane J, Joly L, Koubbi P, Giraldo C, Monchy S, Tavernier E, Loots C. et alOntogenetic shift in the energy allocation strategy and physiological condition of larval plaice (Pleuronectesplatessa). PLOS ONE. 2019;14:e0222261.
GallegoZerrato JJ, Giraldo A. Variaciónespacial y temporal de larvas de pecesenunabahíahipersalinadel Caribe colombiano. Bull. Mar. Coast. Res. 2018;47.
Quinteiro J, Sotelo CG, Rehbein H, Pryde SE, Medina I, Mackie IM. et al, Use of mtDNA direct polymerase chain reaction (pcr) sequencing and pcr-restriction fragment length polymorphism methodologies in species identification of canned tuna. 1998;8.
Jérôme M, Lemaire C, Bautista JM, Fleurence J, Etienne M. Molecular Phylogeny and Species Identification of Sardines. J. Agric. Food Chem. 2003;51:43–50.
Pappalardo AM, Cuttitta A, Sardella A, Musco M, Maggio T, Ferrito V.et al, DNA barcoding and COI sequence variation in Mediterranean lanternfishes larvae. Hydrobiologia. 2015;749:155–167.
Lelievre S, Verrez-Bagnis V, Jerome M, Vaz S. PCR-RFLP analyses of formalin-fixed fish eggs for the mapping of spawning areas in the Eastern Channel and Southern North Sea. J. Plankton Res. 2010;32:1527–1539.
Taylor MI, Fox C, Rico, I, Rico C.Species-specific TaqMan probes for simultaneous identification of (Gadusmorhua L.), haddock (Melanogrammusaeglefinus L.) and whiting (Merlangiusmerlangus L.). Mol. Ecol. Notes. 2002;2:599–601.
Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 2003;270:313–321.
Wibowo A, Panggabaian, AS, Zamroni A, Priatna A, Yusuf HN. using DNA barcode to improve the identification of marine fish larvae, case study coastal water near jakarta and banda sea, indonesia. Indones. Fish. Res. J. 2018;24:37.
Caldarelli-Stefano R, Vago L, Bonetto S, Nebuloni M, Costanzi G. Use of magnetic beads for tissue DNA extraction and IS6110 Mycobacterium tuberculosis PCR. Mol. Pathol. 1999;52:158–160.
Benfield M, Grosjean P, Culverhouse P, Irigolen X, Sieracki M, Hanson A. et al. Rapid: Research on Automated Plankton Identification. Oceanography. 2007;20:172–187.
Lelièvre S, Antajan E, Vaz S. Comparison of traditional microscopy and digitized image analysis to identify and delineate pelagic fish egg spatial distribution. J. Plankton Res. 2012;34:470–483.
Kodama K, Aoki I, Shimizu M, Taniuchi T. Long-term changes in the assemblage of demersal fishes and invertebrates in relation to environmental variations in Tokyo Bay, Japan. Fish. Manag. Ecol. 2002;9:303–313.
Sawada H, Saito H, Hosoi M, Toyohara H. Evaluation of PCR methods for fixed bivalve larvae. J. Mar. Biol. Assoc. U. K. 2008;88:1441–1449.
-
Abstract View: 489 times
PDF Download: 282 times