Effects of Pre-sowing Treatments and Abiotic Stress on the Germination of Ceratonia siliqua Seeds of Four Moroccan Biomes

Main Article Content

Meriem Yatim
Rahal El Kahkahi
Ikram Es- Sbata
Taoufik El- Askri
Samia ElOirdi
Tarik Lakhlifi
Abdelhaq Belhaj
Majida Hafidi
Rachid Zouhair

Abstract

In order to improve the germination rate of carob seeds (Ceratonia siliqua L.), we studied the morphological characteristics of the fruits (pod and seeds, integumentary hardness and tolerance to abiotic stress of the seeds) of seven ecotypes of carob trees from four regions of Morocco. The fruits of its seven populations were studied according to seven discriminative characteristics relating to the pods (length, width, thickness, total number of seeds, total weight of the pulp, seeds  per pod and yield of pods per tree) and four discriminative characteristics relating to the seeds namely length, width, thickness and total fresh weight of seeds. Integumentary hardness was evaluated by pretreating the seeds with boiling water and 95% sulfuric acid. Similarly, we also followed the evolution of water absorption by the seeds during 4 days and we evaluated on these seeds pre-treated, effects of different incubation temperatures (10°C, 25°C and 40°C), their tolerance to different concentrations of NaCl, PEG6000 (0MPa, -0.5MPa, -1MPa and -1.5MPa ) and their reversibility. The morphological characterization of the fruits allowed us to group the populations studied into three groups. Soaking the carob seeds in sulfuric acid for 20 minutes improved the germination rate and time. The evolution of water absorption makes it possible to distinguish two phases. The first phase is obtained during the first 24 hours and characterized by a rapid penetration of water, and second phase which lasts over the last 72 hours and which is characterized by a slow entry of water. The optimum temperature for germination of seeds from all provenances is 25°C. The germination behavior of carob under conditions of osmotic stress demonstrated a highly significant treatment effect (concentration of PEG6000) on the rate and mean time of germination and revealed that this species is very resistant to drought. This study also showed that, salt has a depressive effect on the average germination rate, time and length of radicles. The results of the reversibility test showed that the germination of seeds transferred from osmotic stress and salt stress (-0.5, -1 and -1.5MPa) and from the temperature of 40°C. is totally inhibited. On the other hand, seeds transferred from a temperature of 15°C resume germination under optimal conditions. This study allowed us to select a variety with high yield and tolerant to various biotic constraints.

Keywords:
Morphological characterization, Ceratonia siliqua, seed germination, scarification, reversibility, water stress, salt stress, temperature

Article Details

How to Cite
Yatim, M., Kahkahi, R. E., Sbata, I. E.-, Askri, T. E.-, ElOirdi, S., Lakhlifi, T., Belhaj, A., Hafidi, M., & Zouhair, R. (2020). Effects of Pre-sowing Treatments and Abiotic Stress on the Germination of Ceratonia siliqua Seeds of Four Moroccan Biomes. Annual Research & Review in Biology, 35(12), 11-31. https://doi.org/10.9734/arrb/2020/v35i1230307
Section
Original Research Article

References

Sbay H. Le caroubier au Maroc Un arbre d’avenir. Le Centre de Recherche Forestière. Rabat; 2008.

Ait Chitt M, Belmir M, et Lazrak A. Production de plants sélectionnés et greffés de caroubier. Production Des Plantes Sélectionnés et Greffés Du Caroubier. Transfert de Technologie En Agriculture. 2007;153(037):77–80.

Barwick M. Tropical and subtropical trees. In: An Encyclopedia. Timber, Portland; 2004.

Correia PM, ML, MA. Preliminary studies on Mycorrrhizae of Ceratonia siliqua L. In New York Botanical Gardens: Mycorrhizas in integrated systems from genes to plant development. In New York Botanical Gardens: Mycorrhizas in Integrated Systems from Genes to Plant Development. NY Bronx. 1992;86-88.

Gullo LO, MA, Salleo S. Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions. New Phytologist. 1988;108(3), 267–276. Available:https://doi.org/10.1111/j.1469-8137.1988.tb04162.x

Gharnit N, El Mtili N, Ennabili AT, EA. Social characterisation and exploitation of carob tree (Ceratonia siliqua L.) from Mokrisset and Bab Taza (NW of Morocco). Science Letters. 2001;3(2):1–10.

Gharnit N, El Mtili N, Ennabili A, SF. Caractérisation foliaire du caroubier (Ceratonia siliqua L.) originaire de la province de Chefchaouen (Nord-ouest du Maroc). J. Bot. Soc. Bot. France, 2005;31: 75–84.

Jakab G, Ton J, Flors V, Zimmerli L, MetrauxJ-Pi MMB. Responses to abiotic stresses. In: biochemistry and molecular biology of plants. American Society of Plant Physiologists, 2005 ;139:267–274. Available:https://doi.org/10.1104/pp.105.065698

Hanumantharao B, Nair RM, Nayyar H. Salinity and high temperature tolerance in mungbean [Vigna radiata (L.) Wilczek] from a physiological perspective. Frontiers in Plant Science, 2016;7:1–20. Available:https://doi.org/10.3389/fpls.2016.00957

Patanè C, Saita A, Sortino O. Comparative effects of salt and water stress on seed germination and early embryo growth in two cultivars of sweet Sorghum. Journal of Agronomy and Crop Science. 2013; 199(1):30–37. Available:https://doi.org/10.1111/j.1439-037X.2012.00531.x

Gamalero E, Bona E, Todeschini V, Lingua G, Tecnologica I, Orientale P, Michel VT. Saline and Arid Soils : Impact on Bacteria , Plants , and their Interaction; 2020. Available:https://doi.org/10.3390/biology9060116

Kinet M, Benrebiha F, Bouzid S, Laibacar S, Dutuit P. De réseau a triplex : Allier biotechnologies et écologie pour une sécurité alimentaire accrue en régions arides et semis arides. Cahier d ‘Agricultures. 1998;7 : 505–509.

Martins-Loução MA, Duarte PJ, Cruz C. Phenological and physiological studies during carob (Ceratonia siliqua L.) seed germination. Seed Science and Technology. 1996;24(1):33–47.

Almansouri M, Kinet J, Lutts S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and Soil 2001;231 :243–254. Available:https://doi.org/10.1023/A:1010378409663

Hamrouni Lamia, Souayah Naoufel, Khouja M. Larbi, RMN. Effect of osmotic stress on Myrtus communis germination. Biologia. 2012;67(1):132–136. Available:https://doi.org/10.2478/s11756-011-0140-0

Walbott M, Gallet C, Corcket E. Beech (Fagus sylvatica) germination and seedling growth under climatic and allelopathic constraints. Comptes Rendus – Biologies. 2018;341(9–10):444–453. https://doi.org/10.1016/j.crvi.2018.09.003

Bhatt A, Bhat NR, Santo A, Phartyal SS. Influence of Temperature, Light and Salt on the Germination of Deverra Triradiata Seeds . Seed Science and Technology, 2019;47(1), 25–31. Available:https://doi.org/10.15258/sst.2019.47.1.03

Bell DT, Bellairs SM. Effects of temperature on the germination of selected Australian native species used in the rehabilitation of bauxite mining disturbances in Western Australia. Seed Science and Technology. 1992;20(1):47–55. Available:https://doi.org/19940606830

Tetsuto Abe MM. Geographic variation in germination traits in melia azedarach and Rhaphiolepis umbellata. American Journal of Plant Sciences. 2011;2(01):52–55. Available:https://doi.org/10.4236/ajps.2011.21007

Cavallaro V, Barbera AC, Maucieri C, Gimma G, Scalisi C, Patanè C. Evaluation of variabilityto drought and saline stress through the germination of different ecotypes of carob (Ceratonia siliqua L.) using a hydrotime model. Ecological Engineering, 2016 ;95:557–566. Available:https://doi.org/10.1016/j.ecoleng.2016.06.040

Hadi SMS, Ahmed MZ, Hameed A, Khan MA, Gul B. Seed germination and seedling growth responses of toothbrush tree (Salvadora persica Linn.) to different interacting abiotic stresses. Flora: Morphology, Distribution, Functional Ecology of Plants, 2018;243:45–52. Available:https://doi.org/10.1016/j.flora.2018.04.002

Larbi A, Mekliche A, Abed R, Badis M. Effet du déficit hydrique sur la production de deux variétés de blé dur (Triticum turgidum L . var . durum ) en région semi-aride. 2000;297 :295–297.

Penuelas J, Save R, MO, SL. Remotely measured canopy temperature of greenhouse strawberries as indicator of water status and yield under mild and very mild water stress conditions. Agricultural and Forest Meteorology. 1992;58(1-2):63–77.

Yagoubi S. Irrigation d’appoint et efficience de l’utilisation de l’eau. Cas de la pomme de terre. Centre international de hautes études agronomiques méditerranéennes, Bari (Italie). Centre International de Hautes Études Agronomiques Méditerranéennes, Bari (Italie) ; 1993.

Moran MS, Clarke TR, IY, VA. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment. 1944;49(3):246-263.

Yuan W, Liu D, Dong W, Liu S, Zhou G, Yu G, Zhao T, Feng J, Ma Z, Chen J, Chen Y, Chen S, Han S, Huang J, Li L, Liu H, Liu S, Ma M, Wang Y, Zhao L. Multiyear precipitation reduction strongly decreases carbon uptake over northern China. Journal of Geophysical Research: Biogeosciences. 2014;119(5):881–896. Available:https://doi.org/10.1002/2014JG002608

Haffani S, Mezni M, Ben Nasri M, Chaibi W. Comparative leaf water relations and anatomical responses of three vetch species (Vicia narbonensis L., V. sativa L. and V. villosa Roth.) to cope with water stress. Crop and Pasture Science. 2017;68(7):691–702. Available:https://doi.org/10.1071/CP17029

Turner NC. Further progress in crop water relations. Advances in Agronomy. 1997;58: 293-338.

Belmehdi O, El Harsal A, Benmoussi M, Laghmouchi Y, Skali Senhaji N, Abrini J. Effect of light, temperature, salt stress and pH on seed germination of medicinal plant Origanum elongatum (Bonnet) Emb. & Maire. Biocatalysis and Agricultural Biotechnology, 2018;16:126–131. Available:https://doi.org/10.1016/j.bcab.2018.07.032

Ramin AA. Effects of salinity and temperature on germination and seedling establishment of sweet basil (Ocimum basilicum L.). Journal of Herbs, Spices and Medicinal Plants, 2006; 11(4):81–90. Available:https://doi.org/10.1300/J044v11n04_09

Amigues J, Debaeke P, Lemaire G, et Tardieu F. Sécheresse et agriculture Réduire la vulnérabilité de l’agriculture á un risque accru de manque d’eau. Expertise Scientifique Collective, synthèse d(January), INRA (France) ; 2006.

Ben Dkhil B, Denden M. Effet de la température sur la germination , la dégradation des réserves protéiques et minérales des graines du gombo (Abelmoschus esculentus L .). Journal of New Sciences. 2014;5(4):25–33.

Michel BE, Kaufmann MR. The Osmotic potential of polyethylene glycol 6000. Plant Physiology. 1973;51(5):914–916. Available:https://doi.org/10.1104/pp.51.5.914

Gunes E, Gubbuk H, Ayala-Silva T, Gozlekci S, Ercisli S. Effects of various treatments on seed germination and growth of carob (Ceratonia siliqua L.). Pakistan Journal of Botany. 2013;45(4): 1173–1177.

El Kahkahi R, Zouhair R, Ait Chitt M, Errakhi R. Morocco carob (Ceratonia siliqua L .) populations: Morphological variability of Pods and Kernel. 2014;2(4): 38–47.

Elfazazi K, Jbilou M, Assaidi A, Benbati M, Harrak H. Morphological and biochemical variability of Moroccan Carob (Ceratonia siliqua L .) Produced in Beni Mellal Region. 2017;5(4):14–21.

Mahfoud H, Ameen T, Kazngi F, Nasser S. Morphological and genetic variability of natural Syrian carob (Ceratonia Silique L.). International Journal of Agriculture & Environmental Science. 2018;5(2):70–76. Available:https://doi.org/10.14445/23942568/ijaes-v5i2p110

Boublenza I, El A, Ghezlaoui S, Mahdad M, Vasaï F, Chemat F. Scientia Horticulturae Algerian carob (Ceratonia siliqua L .) populations . Morphological and chemical variability of their fruits and seeds. Scientia Horticulturae. 2019; 108537. Available:https://doi.org/10.1016/j.scienta.2019.05.064

Barracosa P, Lima MB, Cravador A. Analysis of genetic diversity in Portuguese Ceratonia siliqua L. cultivars using RAPD and AFLP markers. Scientia Horticulturae. 2008;118(3):189–199.

Pazir F, Engineering F. Carob bean (Ceratonia siliqua L.) and Its Products. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi, 2018;28(1): 108–112.

Boublenza I, El haitoum A, Ghezlaoui S, Mahdad M, Vasaï F, Chemat F. Algerian carob (Ceratonia siliqua L.) populations. Morphological and chemical variability of their fruits and seeds. Scientia Horticulturae. 2019;256:108537. Available:https://doi.org/10.1016/j.scienta.2019.05.064

Güneş E, Gübbük H, Yaşin D. The effect of different sulfuric acid concentrations on seed germination of carob (Ceratonia siliqua L.). Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca - Horticulture, 2010; 66(1):687. Available:https://doi.org/10.15835/buasvmcn-hort:4520

Bostan SZ, Kiliç D. The effects of different treatments on carob (Ceratonia Siliqua L.) seed germination. Türk Tarım ve Doğa Bilimleri Dergisi. 2014;1(Özel Sayı-1): 706–708. Available:https://dergipark.org.tr/en/pub/turkjans/issue/13310/160806

Christodoulakis NS, Menti J, Galatis B. Structure and development of stomata on the primary root of Ceratonia siliqua L. Annals of Botany. 2002;89(1):23–29. Available:https://doi.org/10.1093/aob/mcf002

Lamlom SH, Abdalrasol EM. Effects of Various pre-sowing treatments on seed germination of carob (Ceratonia Siliqua L.) from Al-Jabal Al-Akhdar area (Balagrae, Al-Baida, Libya). IOSR Journal of Agriculture and Veterinary Science. 2016; 09(09):16–24. Available:https://doi.org/10.9790/2380-0909011624

Pérez-García F. Germination characteristics and intrapopulation variation in carob (Ceratonia siliqua L.) seeds | Características germinativas y variación intrapoblacional en semillas de algarrobo (Ceratonia siliqua L.). Spanish Journal of Agricultural Research. 2009;7(2).

Konate I. Diversité phenotypique et moleculaire du caroubier (Ceratonia siliqua L.) et des Bactéries endophytes qui lui sont associées. Université Mohammed V-Agdal Faculté Des Sciences Rabat, Thèse de Doctorat ; 2007.

Patanè C, Cavallaro V, Avola G, D’Agosta G. Seed respiration of sorghum [Sorghum bicolor (L.) Moench] during germination as affected by temperature and osmoconditioning. Seed Science Research. 2006;16,(4):251–260. DOI:10.1017/SSR2006259

Cavallaro V, Maucieri C, Barbera AC. Lolium multiflorum Lam: Cvs germination under simulated olive mill wastewater salinity and pH stress. Ecological Engineering. 2014;71:113–117. Available:https://doi.org/10.1016/j.ecoleng.2014.07.055

Caruso C, Maucieri C, Berruti A, Borin M, Barbera A. Responses of different Panicum miliaceum L. genotypes to saline and water stress in a marginal Mediterranean environment. Agronomy. 2018;8(1):8. Available:https://doi.org/10.3390/agronomy8010008

Maucieri C, Caruso C, Bona S, Borin M, Barbera AC, Cavallaro V. Influence of salinity and osmotic stress on germination process in an old sicilian landrace and a modern cultivar of Triticum Durum Desf. Cereal Research Communications. 2018; 46(2):253–262. Available:https://doi.org/10.1556/0806.46.2018.07

Medjebeur D, Hannachi L, Ali-Ahmed S, Metna B, Abdelguerfi A. Effets de la salinité et du stress hydrique sur la germination des graines de Hedysarum flexuosum (Fabaceae). Revue d’écologie. 2018;73(3):318–329.

Mbarki S, Skalicky M, Vachova P, Hajihashemi S, Jouini L, Zivcak M, Tlustos P, Brestic M, Hejnak V, Khelil AZ. Comparing salt tolerance at seedling and germination stages in local populations of medicago ciliaris L. To medicago intertexta L. and Medicago scutellata L. Plants, 2020; 9(4). Available:https://doi.org/10.3390/plants9040526

Gharbi F, Kchaou R, Rejeb S, KL, et RM. Tolérance à la Salinité de Trois Espèces d‟Eucalyptus aux Stades Germinatif et Plantule. European Journal of Scientific Research. 2011;(2):208–217.

Lhlou B, Omari PF, Dahan R, Van Damme P, Benkirane R, BH. Evaluation de l’effet du stress hydrique et du porte-greffe sur la clémentine Citrus reticulata Swingle var. Sidi Aissa. Journal of Applied Biosciences. 2013;71:5692–5704. Available:https://doi.org/10.4314/jab.v71i1.98813

Hajri R, Ouhibi C, Mechri M, Kourda H, Younes M. Ben. Salinity and water deficit effects on seed germination and recovery of lotus populations from northern Tunisia. Pakistan Journal of Botany. 2018;50(6): 2085–2090.

Boubacar AA, Douma S, Diouf A. Effets du stress hydrique et de la température sur la germination de quatre ligneux alimentaires prioritaires du Niger Résumé. Afrique Science. 2018;14(3):28–41.

Samb C, Niang M, Samba A, Sall M, Cisse N, Diouf M, Van Damme P. Etude de la germination de cinq provenances de Tamarindus indica L. en conditions de stress hydrique au Sénégal. International Journal of Biological and Chemical Sciences. 2015;9(2):838. Available:https://doi.org/10.4314/ijbcs.v9i2.23

Jaouadi W, Hamrouni L, Souayeh N, Khouja ML. Etude de la germination des graines d’Acacia tortilis sous différentes contraintes abiotiques. Biotechnology, Agronomy and Society and Environment. 2010;14(4):643–652.

Wahbi J. Effet des contraintes hydrique et saline sur la germination de trois espèces d’acacias en Tunisie. Rev. Écol. (Terre Vie), 2012;67 :1–10.

Zouaoui Refka, Mustapha K, Ali F. Effet de l’intensité de la contrainte hydrique sur la germination de Ziziphus Lotus ( L. ) Lam. des Régions Arides de la Tunisie. Algerian Journal of Arid Environment. 2013;3(1): 35–49. Available:https://doi.org/10.12816/0008888

Hajlaoui H, Denden M, Bouslama M. Etude de la variabilité intraspécifique de tolérance au stress salin du pois chiche (Cicer arietinum L.) au stade germination. Tropicultura, 2007;25(3):168–173.

Nichols PGH, Malik AI, Stockdale M, Colmer TD. Salt tolerance and avoidance mechanisms at germination of annual pasture legumes: Importance for adaptation to saline environments. Plant and Soil. 2009;315(1–2), 241–255. Available:https://doi.org/10.1007/s11104-008-9747-5