Two Faces of Regulatory T Cells: From Immune Defense to Tumoral Progression

Main Article Content

S. S. D. E. Medeiros
L. G. De Souza
W. M. Souza
M. G. C. Mayeiro
G. R. Degasperi

Abstract

T cells are the most important cellular element of human immunity defending against virus, bacteria, non-self-tissue and tumor cells. Regulatory T cells (Tregs) are the major responsible for self-tolerance maintenance, especially those expressing forkhead box protein 3 (FOXP3) transcription factor. Tregs suppressive function is established through several mechanisms that are essential to immune system homeostasis, but also related to tumoral microenvironment. Recent studies have provided deeper understanding of Tregs role in cancer as well as promising therapeutic targets for improving prognosis in cancer patients. This review approaches Tregs subtypes, functions and its implication in tumor progression.

Keywords:
T regulatory cells, FOXP3, Cancer.

Article Details

How to Cite
Medeiros, S. S. D. E., Souza, L. G. D., Souza, W. M., Mayeiro, M. G. C., & Degasperi, G. R. (2020). Two Faces of Regulatory T Cells: From Immune Defense to Tumoral Progression. Annual Research & Review in Biology, 35(12), 112-125. https://doi.org/10.9734/arrb/2020/v35i1230317
Section
Minireview Article

References

Koche U, Radtke F. Mechanisms of T Cell development and transformation. Annu. Rev. Cell. Dev. Biol. 2011;27:539-62. Accessed 21 November 2019. Available: https://pubmed.ncbi.nlm.nih.gov/21740230/

Tanaka A, Sakaguchi S. Targeting Treg cells in cancer immunotherapy. Eur J Immunol. 2019;49(8):1140-1146. Accessed 11 December 2020 Available:https://pubmed.ncbi.nlm.nih.gov/31257581/

Kim JH, Kim BS, Lee SK. Regulatory T cells in tumor microenvironment and approach for anticancer immunotherapy. Immune Netw. 2020;20(1):e4. Accessed 02 April 2020. Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049587/

Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000;404:193–7. Accessed 15 December 2019 Available:https://pubmed.ncbi.nlm.nih.gov/10724173/

Petrie HT, Zúñiga-Pflücker JC. Zoned out: Functional mapping of stromal signaling microenvironments in the thymus. Annu. Rev. Immunol. 2007;25:649–79. Accessed 27 February 2020. Available: https://pubmed.ncbi.nlm.nih.gov/17291187/

Zdrojewicz Z, Pachura E, Pachura P. The thymus: A forgotten, but very important organ Adv. Clin. Exp. Med. 2016;25:369–75. Accessed 02 April 2020 Available:https://pubmed.ncbi.nlm.nih.gov/27627572/

Allman D, Sambandam A, Kim S, Miller JP, Pagan A, Well D, et al.. Thymopoiesis independent of common lymphoid progenitors. Nat. Immunol. 2003;4:168–74. Accessed 07 December 2019 Available:https://pubmed.ncbi.nlm.nih.gov/12514733/

Takahama Y. Journey through the thymus: Stromal guides for T-cell development and selection. Nat. Rev. Immunol. 2006;6:127–35. Accessed 13 November 2019 Available:https://pubmed.ncbi.nlm.nih.gov/16491137.

Livák F, Tourigny M, Schatz DG, Petrie HT. Characterization of TCR gene rearrangements during adult murine T cell development. J. Immunol. 1999;162:2575–80. Accessed 06 December 2019 Available:https://pubmed.ncbi.nlm.nih.gov/10072498.

Burtrum DB, Kim S, Dudley EC, Hayday AC, Petrie HT. TCR gene recombination and alpha beta-gamma delta lineage divergence: productive TCR-beta rearrangement is neither exclusive nor preclusive of gamma delta cell development. J. Immunol. 1996;157:4293–6. Accessed 08 April 2020 Available.https://pubmed.ncbi.nlm.nih.gov/8906802/.

Chatila TA, Blaeser F, Ho N, Lederman HM, Voulgaropoulos C, Helms C, et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J. Clin. Invest. 2000;106(12):R75-R81. Accessed 18 November 2019 Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC387260/.

Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 2001;27:68–73. Accessed 09 November 2019 Available:https://www.nature.com/articles/ng0101_68/.

Schubert LA, Jeffery E, Zhang Y, Ramsdell F, Ziegler SF. Scurfin (FOXP3) acts as a repressor of transcription and regulates T Cell activation. J. Biol. Chem. 2001;276(40):37672–9. Accessed 09 December 2019 Available:https://pubmed.ncbi.nlm.nih.gov/11483607.

Attias M, Al-Aubodah T, Piccirillo CA. Mechanisms of human FoxP3+ Treg cell development and function in health and disease. Clin. Exp. Immunol. 2019;197(1):36–51. Accessed 11 February 2020 Available:https://pubmed.ncbi.nlm.nih.gov/30864147.

Georgiev P, Charbonnier LM, Chatila TA. Regulatory T Cells: The many faces of Foxp3. J. Clin. Immunol. 2019;39(7):623-40. Accessed 13 March 2020. Available:https://pubmed.ncbi.nlm.nih.gov/31478130/

Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y , Vignali KM, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function, Nature. 2007; 450(7169):566-9. Accessed 31 March 2020. Available:https://pubmed.ncbi.nlm.nih.gov/18033300/

Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor β. J. Exp. Med. 2001;194(5):629-44. Accessed 30 March 2020 Available:https://pubmed.ncbi.nlm.nih.gov/11535631/.

Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 2007;204(6):1257-65. Accessed 11 April 2020 Available:https://pubmed.ncbi.nlm.nih.gov/17502665/

Liang B, Workman C, Lee J, Chew C, Dale BM, Colonna L, et al. Regulatory T Cells inhibit dendritic cells by lymphocyte activation Gene-3 engagement of MHC Class II. J. Immunol. 2008;180(9):5916-26. Accessed 29 February 2020 Available:https://pubmed.ncbi.nlm.nih.gov/18424711/

Abbas AK, Benoist C, Bluestone JA, Campbell DJ, Ghosh S, Hori S, et al. Regulatory T cells: Recommendations to simplify the nomenclature. Nat. Immunol. 2013;14(4):307-8. Accessed 09 December 2019 Available:https://pubmed.ncbi.nlm.nih.gov/23507634/

Gondek DC, Lu LF, Quezada SA, Sakaguchi S, Noelle RJ. Cutting edge: contact-mediated suppression by CD4 + CD25 + regulatory cells involves a granzyme B-Dependent, perforin-independent mechanism. J. Immunol. 2005;174(4):1783-6. Accessed 21 April 2020 Available:https://pubmed.ncbi.nlm.nih.gov/15699103/

Esterházy D, Loschko J, London M, Jove V, Oliveira TY, Mucida D. Classical dendritic cells are required for dietary antigen-mediated induction of peripheral T(reg) cells and tolerance. Nat. Immunol. 2016;17:545–55. Accessed 03 January 2020 Available:https://pubmed.ncbi.nlm.nih.gov/27019226/

Davidson TS, DiPaolo RJ, Andersson J, Shevach EM. Cutting edge: IL-2 is essential for TGF-β-mediated induction of Foxp3 + T regulatory cells. J. Immunol. 2007;178:4022–6. Accessed 15 January 2020. Available:https://www.jimmunol.org/content/178/7/4022/

Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-Hora M, Kodama T, et al. Pathogenic conversion of Foxp3 + T cells into TH17 cells in autoimmune arthritis. Nat. Med. 2014;20:62–8. Accessed 17 January 2020. Available: https://pubmed.ncbi.nlm.nih.gov/24362934/

Weiner HL, da Cunha AP, Quintana F, Wu H. Oral Tolerance. Immunol. Rev. 2011;241:241–59. Accessed 21 January 2020 Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296283/.

Bacchetta R, Sartirana C, Levings MK, Bordignon C, Narula S, Roncarolo MG. Growth and expansion of human T regulatory type 1 cells are independent from TCR activation but require exogenous cytokines. Eur. J. Immunol. 2002;32:2237–45. Accessed 13 January 2020. Available: https://pubmed.ncbi.nlm.nih.gov/12209636.

Zeng H, Zhang R, Jin B, Chen L. Type 1 regulatory T cells: A new mechanism of peripheral immune tolerance. Cell. Mol. Immunol. 2015;12:566–571. Accessed 18 January 2020. Available:https://www.nature.com/articles/cmi201544/.

Awasthi A, Carrier Y, Peron JP, Bettelli E, Kamanaka M, Flavell RA, et al. A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol. 2007;8(12):1380–9. Accessed 25 January 2020. Available: https://pubmed.ncbi.nlm.nih.gov/17994022/

Gagliani N, Magnani CF, Huber S, Gianolini ME, Pala M, Licona-Limon P, et al. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat. Med. 2013;19:739–46. Accessed 03 February 2020 Available:https://pubmed.ncbi.nlm.nih.gov/23624599/

Levine AG, Medoza A, Hemmers S, Moltedo B, Niec RE, Schizas M, et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature. 2017;546:421–5. Accessed 13 March 2020. Available:https://pubmed.ncbi.nlm.nih.gov/28607488/

Deiuliis J, Shah Z, Shah N, Needleman B, Mikami D, Narula V, et al. Visceral adipose inflammation in obesity is associated with critical alterations in tregulatory cell numbers. PLoS One. 2011;6. Accessed 13 March 2020. Available:https://pubmed.ncbi.nlm.nih.gov/21298111/

Zeng Q, Sun X, Xiao L, Xie Z, Bettini M, Deng T. A unique population: Adipose-resident regulatory T Cells. Front Immunol. 2018;9:2075. Accessed: 11 December 2020. Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6172295/.

De Rosa V, Procaccini C, Calì G, Pirozzi G, Fontana S, Zappacosta S, et al. A key role of leptin in the control of regulatory T cell proliferation. Immunity. 2007;26(2): 241-55. Accessed 10 December 2020 Available:https://pubmed.ncbi.nlm.nih.gov/17307705/

Trenado A, Charlotte F, Fisson S, Yagello M, Klatzmann D, Salomon BL, et al. Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J Clin Invest. 2003;112(11): 1688-96. Accessed 10 December 2020 Available:https://pubmed.ncbi.nlm.nih.gov/14660744/

Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 2009;15(8):930-9. Accessed 11 December 2020 Available:https://www.nature.com/articles/nm.2002/.

Liu Y, Yu Y, Matarese G, La Cava A. Cutting edge: Fasting-induced hypoleptinemia expands functional regulatory T Cells in systemic lupus erythematosus. J. Immunol. 2012;18:2070–3. Accessed 08 Abril 2020 Available:https://pubmed.ncbi.nlm.nih.gov/22291185/

Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. 199;163:5211–8. Accessed 11 December 2019 Available:https://pubmed.ncbi.nlm.nih.gov/10553041/

Ahmadzadeh M, Pasetto A, Jia L, Deniger DC, Stevanović S, Robbins PF, et al. Tumor-infiltrating human CD4+ regulatory T cells display a distinct TCR repertoire and exhibit tumor and neoantigen reactivity. Sci. Immuno. 2019;4. Accessed: 03 February 2020. Available:https://pubmed.ncbi.nlm.nih.gov/30635355/

Plitas G, Rudensky AY. Regulatory T cell in cancer. Annu. Rev. Cancer Biol. 2020;4:459-77. Accessed 08 December 2020. Available:https://www.annualreviews.org/doi/abs/10.1146/annurev-cancerbio-030419-033428/.

Fridman WH, Pagès F, Saut̀s-Fridman C, Galon J. The immune contexture in human tumours: Impact on clinical outcome. Nat. Rev. Cancer. 2012;12:298–306. Accessed 20 December 2019. Available: https://pubmed.ncbi.nlm.nih.gov/22419253/

Saleh R, Elkord E. FoxP3+ T regulatory cells in cancer: prognostic biomarkers and therapeutic targets. Cancer Lett. 2020;490:174-85. Accessed 09 December 2020. Available:https://www.sciencedirect.com/science/article/pii/S0304383520303785/.

Chaudhary B, Elkord E. Regulatory T cells in the tumor microenvironment and cancer progression: Role and therapeutic targeting. Vaccines (Basel). 2016;4(3):28. Accessed 12 January 2020. Available:https://pubmed.ncbi.nlm.nih.gov/27509527/

Gobert M, Treilleux I, Bendriss-Vermare N, Bachelot T, Goddard-Leon S, Arfl V, et al. Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res. 2009;68:2000–9. Accessed 10 December 2020 Available:https://pubmed.ncbi.nlm.nih.gov/19244125/

Svensson H, Olofsson V, Lundin S, Yakkala C, Björck S, Börjesson L, et al. Accumulation of CCR4+ CTLA-4hi FOXP3+CD25hi regulatory T Cells in colon adenocarcinomas correlate to reduced activation of conventional T Cells. PLoS One. 2012;7. Accessed 5 November 2019 Available:https://journals.plos.org/plosone/article?id10.1371/journal.pone.0030695/.

Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell. 2015;27:450–61. Accessed 10 January 2020. Available:https://pubmed.ncbi.nlm.nih.gov/25858804/

Wei X, Zhang J, Gu Q, Huang M, Zhang W, Guo J, et al. Reciprocal expression of IL-35 and IL-10 defines two distinct effector treg subsets that are required for maintenance of immune tolerance. Cell Rep. 2017;21(7):1853-1869. Available:https://pubmed.ncbi.nlm.nih.gov/29141218/

Kalia V, Penny LA, Yuzefpolskiy Y, Baumann FM, Sarkar S. Quiescence of memory CD8(+) T Cells Is mediated by regulatory T Cells through Inhibitory receptor CTLA-4. Immunity. 2015;42(6): 1116-29. Accessed 10 December 2020 Available:https://pubmed.ncbi.nlm.nih.gov/26084026/

Ohta A, Kini R, Ohta A, Subramanian M, Madasu M, Sitkovsky M. The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front Immunol. 2012;3:190. Accessed 10 December 2020. Available:.https://pubmed.ncbi.nlm.nih.gov/22783261/.

Finelli C. Obesity and immunotherapy: The surprisingly positive association. Immunotherapy. 2020;12(8): 541-44. Accessed 12 December 2020 Available:https://www.futuremedicine.com/doi/full/10.2217/imt-2019-0143

Sánchez-Jiménez F, Pérez-Pérez A, de la Cruz-Merino L, Sánchez-Margalet V. Obesity and breast cancer: Role of leptin. Front Oncol. 2019;9:596. Accessed 10 December 2020 Available:https://pubmed.ncbi.nlm.nih.gov/31380268/

Hayes AJ, Larkin J. BMI and outcomes in melanoma: more evidence for the obesity paradox. Lancet Oncol. 2018;19(3):269-70. Accessed 12 December 2020 Available:https://pubmed.ncbi.nlm.nih.gov/29449191/

Lu Z, Xie J, Wu G, Shen J, Collins R, Chen W, et al. Fasting selectively blocks development of acute lymphoblastic leukemia via leptin-receptor upregulation. Nat. Med. 2017;23:79–90. Accessed 5 December 2019 Available:https://pubmed.ncbi.nlm.nih.gov/27941793/

Alissafi T, Hatzioannou A, Legaki AI, Varveri A, Verginis P. Balancing cancer immunotherapy and immune-related adverse events: the emerging role of regulatory T cells. J. Autoimmun. 2019;104. Accessed 16 January 2020 Available:https://pubmed.ncbi.nlm.nih.gov/31421963/

Tsai HF, Hsu PN, Kung JT. Cancer immunotherapy by targeting immune checkpoints: mechanism of T cell dysfunction in cancer immunity and new therapeutic targets. J. Biomed. Sci. 2017;24:35. Accessed 18 December 2020 Available:https://jbiomedsci.biomedcentral.com/articles/10.1186/s12929-017-0341-0/.

Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 Blockade with nivolumab in relapsed or refractory hodgkin’s lymphoma. New Engl. J. Med. 2015;372:311–9. Accessed 10 February 2020 Available:https://pubmed.ncbi.nlm.nih.gov/25482239/

Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus Ipilimumab in advanced melanoma. Engl. J. Med. 2013;369:122–33. Accessed 5 December 2019. Available:https://www.nejm.org/doi/full/10.1056/nejmoa1302369/.

Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, et al. Fc-dependent depletion of tumor-infiltrating regulatory t cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 2013;210:1695–710. Accessed 5 November 2019 Available:https://pubmed.ncbi.nlm.nih.gov/23897981

Chung KY, Gore I, Fong L, Venook A, Beck SB, Dorazio P, et al. Phase II study of the anti-cytotoxic T-lymphocyte-associated antigen 4 monoclonal antibody, tremelimumab, in patients with refractory metastatic colorectal cancer. J. Clin. Oncol. 2010;28:3485–90. Accessed 10 November 2019 Available:https://pubmed.ncbi.nlm.nih.gov/20498386/

Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T, Srinivasan M, et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res. 2013;1:32–42. Accessed 19 November 2019. Available:https://cancerimmunolres.aacrjournals.org/content/1/1/32/

Pelster MS, Amaria RN. Neoadjuvant immunotherapy for locally advanced melanoma. Curr. Treat. Options Oncol. 2020;21(2):10. Accessed 12 December 2020 Available:https://pubmed.ncbi.nlm.nih.gov/32025932/

Byeon S, Cho JH, Jung HA, et al. PD-1inhibitors for non-small cell lung cancer patients with special issues: Real-world evidence. Cancer Med. 2020;9(7):2352–62. Accessed 12 December 2020 Available:https://pubmed.ncbi.nlm.nih.gov/32027780/

Jensen SM, Maston LD, Gough MJ, Ruby CE, Redmond WL, Crittenden M, et al. Signaling through OX40 enhances antitumor immunity. Semin. Oncol. 2010;37:524–32. Accessed 27 January 2020 Available:https://www.sciencedirect.com/science/article/abs/pii/S0093775410001 673/.

Zappasodi R, Sirard C, Li Y, Budhu S, Abu-Akeel M, Liu C, et al. Rational design of anti-GITR-based combination immunotherapy. Nat Med. 2019;25:759–66. Accessed 13 January 2020. Available:https://www.nature.com/articles/s41591-019-0420-8/.

Li S, Liu M, Do MH, Chou C, Stamatiades EG, Nixon BG, et al. Cancer immunotherapy via targeted TGF-β signalling blockade in Th cells. Nature. 2020;587(7832):121-25. Accessed 11 December 2020 Available:https://www.nature.com/articles/s41586-020-2850-3/.

Sarkar A, Donkor MK, Li MO. T cell- but not tumor cell-produced TGF-β1 promotes the development of spontaneous mammary cancer. Oncotarget. 2011;2(12): 1339-1351. Accessed 11 December 2020 Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282091/

Donkor MK, Sarkar A, Li MO. TGF-β1 produced by activated CD4+ T cells antagonizes T cell surveillance of tumor development. OncoImmunology. 2012; 1(2):162-171. Accessed 11 December 2020 Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376999/

Qureshi OS, Zheng Y, Nakamurama K, Attridge K, Manzotti, C, Schmidt, EM, Baker, J, Jeffrey, LE, Futter, CE, Anderson G, Walker, LSK, Sansom DM. Trans endocytosis of CD80 and CD86: A molecular basis for the extrinsic function of CTLA-4. Science. 2011;332(6029):600-603. Accessed 10 December 2020. Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198051/

Onish Y, Fehervari Z, Yamaguchi T, Sakaguchi S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A. 2008;105(29):10113-10118. Accessed 11 December 2020. Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376999/

Yan Z, Sanjay KG, Ruma B. Regulatory T Cells Interfere with Glutathione Metabolism in Dendritic Cells and T Cells. J Biol Chem. 2010;285(53):41525–41532. Accessed 10 December 2020. Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3009879/

Liang B, Workman C, Claude Chew JL, Dale BM, Colonna L, Flores M, Li N, Schweighoffer E, Greenberg S, Tybulewicz V, Vignali D, Raphael C. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol. 2008;180(9):5916-5926. Accessed 11 December 2020. Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC39648752/.

Rueda CM, Jackson CM, Chougnet CA. Regulatory T-Cell-Mediated Suppression of Conventional T-Cells and Dendritic Cells by Different cAMP Intracellular Pathways. 2016;7:2016. Accessed 11 December 2020. Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4889573/.

Akkaya B, Oya Y, Akkaya M, Jafar Al Souz JA, Holstein AH, Kamenyeva O, Kabat J, Matsumura R, Dorward DW, Glass D, Shevach EMT regulatory cells mediate specific suppression by depleting peptide-MHC class II from dendritic cells. Nat Immunol. 2019;20(2):218-231. Accessed 12 December 2020.

Tadokoro CE, Shakhar G, Shen S, Ding Y, Lino AC, Maraver A, Lafaille JJ, Dustin ML. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J Exp Med. 2006;203(3):505–511. Accessed 12 December 2020. Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118249/

Mavin E, Nicholson L, Rafez AS, Gao F, Dickinson A, Xiao-nong W. Human Regulatory T Cells Mediate Transcriptional Modulation of Dendritic Cell Function. J Immunol. 2017;198(1):138-146. Accessed 11 December 2020. Available:https://www.jimmunol.org/content/198/1/138.short

Gondek DC, Lu L.F, Quezada S.A, Sakaguchi S, Noelle, R.J. Cutting edge: Contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism J. Immunol. 2005;174:1783–1786. Accessed 12 December 2020. Available:https://www.sciencedirect.com/science/article/pii/S1074761309001976

Grossman WJ, Verbsky JW, Tollefsen BL, Kemper C, Atkinson JP, Lev TJ. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood. 2004;104(9): 2840-2848. Accessed 12 December 2020. Available:www.bloodjournal.org

Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X, Treuting P, Siewe, L, Roers A, Henderson Jr W, Muller W, Rudensky AY. Regulatory T cell-derived interleukin-10 limits inflammation et environmental interfaces. Immunity. 2008;28(4):546-558. Accessed 10 December 2020. Available:https://www.sciencedirect.com/science/article/pii/S1074761308001131

Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich JM, Jack RS, Wunderlich FT, Brüning JC, Müller W, Rudensky AY. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity. 2011;34(4):546-558. Accessed 11 December 2020. Available:https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC3088485/

Hsu P, Santner-Nanan B, Hu M, Skarratt K, Hiang C, Stormon M, Wong M, Fuller SJ, Nanan R. IL-10 Potentiates Differentiation of Human Induced Regulatory T Cells via STAT3 and Foxo1. J Immunol. 2015;195(8):3665-3674. Accessed 11 December 2020. Available:https://www.jimmunol.org/content/195/8/3665

Konkel JE, Zhang D, Zanvit P, Chia C, Zangarle-Murray T, Jin W, Wang S, Chen W. Transforming Growth Factor-β Signaling in Regulatory T Cells Controls T Helper-17 Cells and Tissue-Specific Immune Responses. Immunity. 2017; 46(4):660-674. Accessed 09 December 2020. Available:https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC28423340/