• Submission

Annual Research & Review in Biology

  • About
    • About the Journal
    • Submissions & Author Guideline
    • Accepted Papers
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Propose a Special Issue
    • Reprints
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving Policy
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Submission
  • Testimonials
  • Announcements
Advanced Search
  1. Home
  2. Archives
  3. 2021 - Volume 36 [Issue 11]
  4. Review Article

Submit Manuscript


Subscription



  • Home Page
  • Author Guidelines
  • Editorial Board Member
  • Editorial Policy
  • Propose a Special Issue
  • Membership

Inventory of Animal Contamination by Cyanotoxins in Africa

  • K. E. Yao
  • K. J. Coulibaly
  • D. R. Yao
  • A. M. Koffi
  • M. Koné
  • N. S. Vakou
  • M. Dosso
  • V. N’ Douba

Annual Research & Review in Biology, Page 9-14
DOI: 10.9734/arrb/2021/v36i1130445
Published: 23 November 2021

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


This study reviews work on the accumulation of cyanotoxins in fish and various animals in Africa. Microcystins (MC-LR, MC-RR, and MC-YR) appear to be the main contaminating toxin in fish and other animals. In fish, the highest concentration (1917 μg.kg-1) was detected in the whole body of a small species of fish (Rastrineobola argenta) consumed whole by the populations around Lake Victoria. In large species, the intestine (followed by the liver) is the organ that accumulates the most cyanotoxins; up to 3059 ng.g-1 in Algerian common carp. Fish muscle accumulates little or no cyanotoxins in most publications and Oreochromis niloticus, a phytoplanktonophagous species widely consumed by the African populations, remains the most studied species. In other animal species, cases of cyanotoxin mortality were reported in most publications in southern and central Africa and only one publication in North Africa. No study on this subject has been referenced in other parts of Africa.


Keywords:
  • Accumulation
  • cyanotoxins
  • fish
  • other animals
  • Africa
  • Full Article – PDF
  • Review History

How to Cite

Yao, K. E., Coulibaly, K. J., Yao, D. R., Koffi, A. M., Koné, M., Vakou, N. S., Dosso, M., & Douba, V. N. (2021). Inventory of Animal Contamination by Cyanotoxins in Africa. Annual Research & Review in Biology, 36(11), 9-14. https://doi.org/10.9734/arrb/2021/v36i1130445
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

References

Pinay G, Gascuel C, Ménesguen A, Souchon Y, Le Moal M. (coord), Levain A, Etrillard C, Moatar F, Pannard A, Souchu P. L’eutrophisation : Manifestations, causes, conséquences et prédictibilité. Synthèse de l’Expertise scientifique collective CNRS - Ifremer - INRA - Irstea (France). 2017;148.

Paerl HW, Huisman J. Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports. 2013;1(1):27–37.

Dokulil MT, Teubner K. Eutrophication and climate change: Present situation and future scenarios. 2009;16.

Amasha RH, Aly MM. Removal of dangerous heavy metal and some human pathogens by dried green algae collected from Jeddah coast. Pharmacophore. 2021;10(3):5-13.

Kumar R. Toxic algae and effects of algal poisoning in animals and human beings. World Journal of Environmental Biosciences. 2019;10(1):9-12.

De la Cruz AA, Chernoff N, Sinclair JL, Hill D, Diggs DL, Lynch AT. Introduction to Cyanobacteria and Cyanotoxins. 2020;35.

Zilberg B. Gastroenteritis in salisbury european children a five-year study. The Central African Journal of Medicine. 1966;12(9):164-168.

Azevedo MFOS, Carmichael WW, Jochimsen ME, Rinehart LK, Lau S, Shaw RG, Eaglesham KG. Human intoxication by microcystins during renal dialysis treatment in Caruaru/Brazil. Toxicology. 2002;181(182):441-446.

Krienitz L, Ballot A, Kotut K, Wiegand C, Pütz S, Metcalf JS, Codd GA, Pflugmacher S. Contribution of hot spring cyanobacteria to the mysterious deaths of Lesser Flamingos at Lake Bogoria, Kenya. FEMS Microbiology Ecology. 2003;43:141-148.

Wang H, Xu C, Liu Y, Jeppesen E, Svenning JC, et al. From unusual suspect to serial killer: Cyanotoxins boosted by climate change may jeopardize megafauna. The Innovation. 2021;2(2):3.

Mohamed AZ, Carmichael WW, Hussein AA. Estimation of microcystins in the freshwater fish oreochromis niloticus in an Egyptian fish farm containing a microcystis bloom. Environmental Toxicology. 2003;18:137–141.

Amrani A. Impacts écologiques et sanitaires de la prolifération massive des cyanobactéries toxiques sur la faune piscicole et la production aquacole dans le lac Oubeïra : Bioaccumulation des cyanotoxines dans les poissons et risques sanitaires associés. Thèse de Doctorat, Université Badji Mokhtar –Annaba, Algérie. 2016;165.

Poste EA, Hecky ER, Guildford JS. Evaluating microcystin exposure risk through fish consumption. Environnemental Sciences and Technology. 2011;45:5806–5811.

Simiyu BM, Oduor SO, Rohrlack T, Sitoki L, Kurmayer R. Microcystin content in phytoplankton and in small fish from eutrophic Nyanza Gulf, Lake Victoria, Kenya. Toxins. 2018;275(10):19.

Nyakairu GWA, Nagawa CB, Mbabazi J. Assessment of cyanobacteria toxins in freshwater fish: A case study of Murchison Bay (Lake Victoria) and Lake Mburo, Uganda. Toxicon. 2010;55:939–946.

Semyalo R, Rohrlack T, Naggawa C, Nyakairu WG. Microcystin concentrations in Nile tilapia (Oreochromis niloticus) caught from Murchison Bay, Lake Victoria and Lake Mburo: Uganda. Hydrobiologia, 2010;638:235–244.

Nonga HE, Sandvik M, Miles CO, Lie E, Mdegela RH, Mwamengele GL, Semuguruka WD, Skaare JU. Possible involvement of microcystins in the unexplained mass mortalities of Lesser Flamingo (Phoeniconaias minor Geoffroy) at Lake Manyara in Tanzania. Hydrobiologia. 2011;678:167–178.

Harding WR, Rowe N, Wessels JC, Beattie KA, Codd GA. Death of a dog attributed to the cyanobacterial (blue-green algal) hepatotoxin nodularin in South Africa. Journal of The South African Veterinary Association. 1995;66(4):256-259.

Van Halderen A, Harding WR, Wessels JC, Schneider DJ, Heine EWP, van der Merwe J, Fourie JM. Cyanobacterial (blue-green algae) poisoning of livestock in the western cape province of South Africa. Journal of The South African Veterinary Association. 1995;66(4):260-264.

Mohamed ZA, Bakr A. Concentrations of cylindrospermopsin toxin in water and tilapia fish of tropical fishponds in Egypt, and assessing their potential risk to human health. Environmental Science and Pollution Research. 2015;25:36287–36297.

Amrani A, Nasri H, Azzouz A, Kadi Y. et Bouaïcha N. Variation in cyanobacterial hepatotoxin (Microcystin) content of water samples and two species of fishes collected from a Shallow Lake in Algeria. Archives of Environmental Contamination and Toxicology. 2014 ;66:379–389.

Krienitz L, Ballot A, Casper P, Kotut K, Wiegand C, Pflugmacher S. Cyanobacteria in hot springs of East Africa and their potential toxicity. Algological Studies. 2005;117:297–306.

Nchabeleng T, Cheng P, Oberholster PJ, Botha AM, Smit WJ, Luus-Powell WJ. Microcystin-LR equivalent concentrations in fish tissue during a post-bloom Microcystis exposure in Loskop Dam, South Africa. African Journal of Aquatic Science. 2014;39(4):459–466.

Zewde WT, Johansen AJ, Kifle D, Demissie BT, Hansen HJ, Tadesse Z. Concentrations of microcystins in the muscle and liver tissues of fish species from Koka reservoir, Ethiopia: A potential threat to public health. Toxicon, 2018; 153:85–95.

Nasri H, El Herry S, Bouaïcha N. First reported case of turtle deaths during a toxic Microcystis spp. bloom in Lake Oubeira, Algeria. Ecotoxicology and Environmental Safety. 2008;71:535– 544.

Bengis R, Govender D, Lane E, Myburgh J, Oberholster P, Buss P, Prozesky L, Keet D. Eco-epidemiological and pathological features of wildlife mortality events related to cyanobacterial bio-intoxication in the Kruger National Park, South Africa. Journal of the South African Veterinary Association. 2016;87(1):1-9.

Oberholster PJ, Myburgh JG, Govender D, Bengis R, Botha A-M. Identification of toxigenic Microcystis strains after incidents of wild animal mortalities in the Kruger National Park, South Africa. Ecotoxicology and Environmental Safety. 2009;72:1177–1182.
  • Abstract View: 295 times
    PDF Download: 163 times

Download Statistics

Downloads

Download data is not yet available.
  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission / Login
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo


© Copyright 2010-Till Date, Annual Research & Review in Biology. All rights reserved.