Lipid Peroxidation Status in Embryo Culture Media: The Impact on Fertilization and Embryo Quality during IVF Cycles
Annual Research & Review in Biology,
Page 61-74
DOI:
10.9734/arrb/2022/v37i1230558
Abstract
Background: The process of preimplantation embryo development in vitro represents a key phase during in vitro fertilization (IVF) cycles. It involves several regulatory signaling pathways as well as an optimized in vitro culture system. The resulting embryo quality helps to determine embryo competence before implantation and pregnancy outcomes. Reactive oxygen species (ROS) are known to play a major role in influencing the process of embryo development. Their role can be reflected in the regulation of signaling pathways as second messengers or in the irreversible cell alterations due to oxidative stress following an excess of ROS levels.
Methods: In this study, we investigated the association between morphological embryo quality (fertilization, cleavage quality, and fragmentation levels) and lipid peroxidation levels (Malondialdehyde) in embryo culture media. After intracytoplasmic sperm injection (ICSI), a total of 103 oocytes were evaluated on day 1 and day 3 of their development, and their corresponding culture media were analyzed by estimating MDA levels using thiobarbituric acid.
Results: The results showed no significant association between MDA levels in culture media and fertilization rate (p=0.3), sperm quality (p=0.99; p= 0.17; p=0.46; p=0.30; p=0.65; p=0.44; p=0.09; p=0.15; p=0.56), embryo fragmentation levels (p=0.79; p=0.40), AMH levels (p=0.31; p=0.36) and female age (p=0.60; p=0.34). However, we revealed a significant association between cleavage quality and MDA levels in the embryo environment (p=0.03).
Conclusion: We conclude that oxidative stress in IVF culture media might be mainly associated with delayed embryonic development.
Keywords:
- Embryo development
- reactive oxygen species
- malondialdehyde
- oxidative stress
How to Cite
References
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13.
Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol [Internet]. 2014;24(10):R453–62.
Available:http://dx.doi.org/10.1016/j.cub.2014.03.034
Han Y, Ishibashi S, Iglesias-Gonzalez J, Chen Y, Love NR, Amaya E. Ca 2+ -Induced Mitochondrial ROS Regulate the Early Embryonic Cell Cycle. Cell Rep [Internet]. 2018;22(1):218–31.
Available:https://doi.org/10.1016/j.celrep.2017.12.042
Thannickal VJ, Fanburg BL. invited review Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol [Internet]. 2000;279(78):1005–28.
Available:http://www.ajplung.orgl1005downloadedfromwww.physiology.org/journal/ajplungby$%7BindividualUser.givenNames%7D$%7BindividualUser.surname%7D
Guérin P, El Mouatassim S, Ménézo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update. 2001;7(2):175–89.
Lijie X, Ullah O, Haixing L, Ali I, Li Z, Fang NZ. Pioglitazone mediated reduction in oxidative stress and alteration in level of PPARγ, Nrf2 and antioxidant enzyme genes in mouse preimplantation embryo during maternal to zygotic transition. Pak J Zool. 2019;51(3):1085–92.
Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA. Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med. 2000;28(10):1456–62.
Nixon VL, McDougall A, Jones KT. Ca2+ oscillations and the cell cycle at fertilisation of mammalian and ascidian eggs. Biol Cell. 2000;92(3–4):187–96.
Jones DP. Radical-free biology of oxidative stress. Am J Physiol - Cell Physiol. 2008; 295(4).
Ahmadi H, Fathi F, Moeini A, Amidi F, Sobhani A. Evaluation of prooxidant-antioxidant balance in in vitro fertilization-conceived mice. Clin Exp Reprod Med. 2018;45(2):82–7.
Combelles CMH, Gupta S, Agarwal A. Could oxidative stress influence the in-vitro maturation of oocytes? Reprod Biomed Online [Internet]. 2009;18(6):864–80.
Available:http://dx.doi.org/10.1016/S1472-6483(10)60038-7
Lee R, Margaritis M, M. Channon K, Antoniades C. Evaluating oxidative stress in human cardiovascular disease: Methodological aspects and considerations. Curr Med Chem. 2012; 19(16):2504–20.
Truong TT, Soh YM, Gardner DK. Antioxidants improve mouse preimplantation embryo development and viability. Hum Reprod. 2016;31(7): 1445–54.
Truong T, Gardner DK. Antioxidants improve IVF outcome and subsequent embryo development in the mouse. Hum Reprod. 2017;32(12):2404–13.
Ollero M, Gil-Guzman E, Lopez MC, Sharma RK, Agarwal A, Larson K, et al. Characterization of subsets of human spermatozoa at different stages of maturation: Implications in the diagnosis and treatment of male infertility. Hum Reprod. 2001;16(9):1912–21.
Borowiecka M, Wojsiat J, Polac I, Radwan M, Radwan P, Zbikowska HM. Oxidative stress markers in follicular fluid of women undergoing in vitro fertilization and embryo transfer. Syst Biol Reprod Med. 2012;58(6):301–5.
Ahmed W, Lingner J. Impact of oxidative stress on telomere biology. Differentiation. 2018;99:21–7.
Lan KC, Lin YC, Chang YC, Lin HJ, Tsai YR, Kang HY. Limited relationships between reactive oxygen species levels in culture media and zygote and embryo development. J Assist Reprod Genet. 2019;36(2):325–34.
J. Premkumar B, Agarwal A. Female infertility and assisted reproduction: Impact of oxidative stress- An update. Curr Womens Health Rev. 2012;8(3):183–207.
Kim SG, Kim YY, Park JY, Kwak SJ, Yoo CS, Park IH, et al. Early fragment removal on in vitro fertilization day 2 significantly improves the subsequent development and clinical outcomes of fragmented human embryos. Clin Exp Reprod Med. 2018; 45(3):122–8.
Soto-Heras S, Paramio MT. Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Res Vet Sci [Internet]. 2020;132:342–50.
Available:https://doi.org/10.1016/j.rvsc.2020.07.013
Ribas-Maynou J, Yeste M, Salas-Huetos A. The relationship between sperm oxidative stress alterations and IVF/ICSI outcomes: A systematic review from nonhuman mammals. Biology (Basel). 2020;9(7):1–18.
Desjardins P, Hansen JB, Allen M. Microvolume protein concentration determination using the NanoDrop 2000c Spectrophotometer. J Vis Exp. 2010; (33):1–4.
Jamil M, Debbarh H, Aboulmaouahib S, Aniq Filali O, Mounaji K, Zarqaoui M, et al. Reactive oxygen species in reproduction: Harmful, essential or both? Zygote; 2020.
Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: Central role of complex III. J Biol Chem. 2003;278(38):36027–31.
Luberda Z. The role of glutathione in mammalian gametes. Reprod Biol. 2005; 5(1):5–17.
Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, Camello PJ. Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Physiol - Cell Physiol. 2006;291(5):1082–8.
Camello-Almaraz MC, Pozo MJ, Murphy MP, Camello PJ. Mitochondrial production of oxidants is necessary for physiological calcium oscillations. J Cell Physiol. 2006;206(2):487–94.
Feissner RF, Skalska J, Gaum WE, Sheu SS. Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci. 2009;14(4):1197–218.
Takahashi T, Takahashi E, Igarashi H, Tezuka N, Kurachi H. Impact of oxidative stress in aged mouse oocytes on calcium oscillations at fertilization. Mol Reprod Dev. 2003;66(2):143–52.
Jana SK, K NB, Chattopadhyay R, Chakravarty B, Chaudhury K. Upper control limit of reactive oxygen species in follicular fluid beyond which viable embryo formation is not favorable. Reprod Toxicol [Internet]. 2010;29(4):447–51.
Available:http://dx.doi.org/10.1016/j.reprotox.2010.04.002
Bedaiwy MA, Falcone T, Mohamed MS, Aleem AAN, Sharma RK, Worley SE, et al. Differential growth of human embryos in vitro: Role of reactive oxygen species. Fertil Steril. 2004;82(3):593–600.
Martín-Romero FJ, Miguel-Lasobras EM, Domínguez-Arroyo JA, Gonzélez-Carrera E, Álvarez IS. Contribution of culture media to oxidative stress and its effect on human oocytes. Reprod Biomed Online [Internet]. 2008;17(5):652–61.
Available:http://dx.doi.org/10.1016/S1472-6483(10)60312-4
Shih YF, Lee TH, Liu CH, Tsao HM, Huang CC, Lee MS. Effects of reactive oxygen species levels in prepared culture media on embryo development: A comparison of two media. Taiwan J Obstet Gynecol [Internet]. 2014;53(4):504–8.
Available:http://dx.doi.org/10.1016/j.tjog.2013.12.009
Agarwal A, Gupta S, Sikka S. The role of free radicals and antioxidants in reproduction. Curr Opin Obstet Gynecol. 2006;18(3):325–32.
Dai S, Qiao Y, Jin H, Xin Z, Su Y, Sun Y, et al. Clinical corner : Communication effect of coincubation time of sperm-oocytes on fertilization, embryonic development and subsequent pregnancy outcome. 2012;348–53.
Zhang XD, Liu JX, Liu WW, Gao Y, Han W, Xiong S, et al. Time of insemination culture and outcomes of in vitro fertilization : a systematic review and meta-analysis. 2013;19(6):685–95.
Kong X, Yang S, Gong F, Lu C, Zhang S, Lu G, et al. The relationship between cell number, division behavior and developmental potential of cleavage stage human embryos: A time-lapse study. PLoS One. 2016;11(4):1–11.
Blank C, DeCroo I, Weyers B, van Avermaet L, Tilleman K, van Rumste M, et al. Improvement instead of stability in embryo quality between day 3-5: A possible extra predictor for blastocyst selection. Eur J Obstet Gynecol Reprod Biol [Internet]. 2020;253: 198–205.
Available:https://doi.org/10.1016/j.ejogrb.2020.08.027
Ozawa M, Hirabayashi M, Kanai Y. Developmental competence and oxidative state of mouse zygotes heat-stressed maternally or in vitro. Reproduction. 2002;124(5):683–9.
Karagenc L, Sertkaya Z, Ciray N, Ulug U, Bahçeci M. Impact of oxygen concentration on embryonic development of mouse zygotes. Reprod Biomed Online [Internet]. 2004;9(4):409–17.
Available:http://dx.doi.org/10.1016/S1472-6483(10)61276-X
Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y, et al. ROS and ROS-Mediated Cellular Signaling. Oxid Med Cell Longev. 2016;2016 (Fig. 1).
Amaral CS, Koch J, Correa Júnior EE, Bertolin K, Mujica LKS, Fiorenza MF, et al. Heat stress on oocyte or zygote compromises embryo development, impairs interferon tau production and increases reactive oxygen species and oxidative stress in bovine embryos produced in vitro. Mol Reprod Dev. 2020;87(8):899–909.
Paria BC, Dey SK. Preimplantation embryo development in vitro: Cooperative interactions among embryos and role of growth factors. Proc Natl Acad Sci U S A. 1990;87(12):4756–60.
Prados FJ, Debrock S, Lemmen JG, Agerholm I. The cleavage stage embryo. Hum Reprod. 2012;27 Suppl 1:50–71.
Iwata K, Yumoto K, Sugishima M, Mizoguchi C, Kai Y, Iba Y, et al. Analysis of compaction initiation in human embryos by using time-lapse cinematography. J Assist Reprod Genet. 2014;31(4):421–6.
Tatemoto H, Sakurai N, Muto N. Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during In vitro maturation: Role of cumulus cells1. Biol Reprod. 2000;63(3):805–10.
Dalvit GC, Cetica PD, Pintos LN, Beconi MT. Reactive oxygen species in bovine embryo in vitro production. Biocell. 2005; 29(2):209–12.
Ufer. The roles of glutathione peroxidases during embryo development. Front Mol Neurosci. 2011;4(July):1–14.
Surai PF, Fisinin VI, Karadas F. Antioxidant systems in chick embryo development. Part 1. Vitamin E, carotenoids and selenium. Anim Nutr [Internet]. 2016;2(1):1–11.
Available:http://dx.doi.org/10.1016/j.aninu.2016.01.001
Qian D, Li Z, Zhang Y, Huang Y, Wu Q, Ru G, et al. Response of mouse zygotes treated with mild hydrogen peroxide as a model to reveal novel mechanisms of oxidative stress-induced injury in early embryos. Oxid Med Cell Longev. 2016;2016.
Nasr-Esfahani MH, Aitken JR, Johnson MH. Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vitro or in vivo. Development. 1990;109(2):501–7.
Thomas M, Jain S, Kumar GP, Laloraya M. A programmed oxyradical burst causes hatching of mouse blastocysts. J Cell Sci. 1997;110(14):1597–602.
Morales H, Tilquin P, Rees JF, Massip A, Dessy F, Van Langendonckt A. Pyruvate prevents peroxide-induced injury of In vitro preimplantation bovine embryos. Mol Reprod Dev. 1999;52(2):149–57.
Lopes AS, Lane M, Thompson JG. Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes. Hum Reprod. 2010;25(11):2762–73.
Yang HW, Hwang KJ, Kwon HC, Kim HS, Choi KW, Oh KS. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum Reprod. 1998;13(4):998–1002.
Gupta S, Agarwal A, Banerjee J, Alvarez JG. The role of oxidative stress in spontaneous abortion and recurrent pregnancy loss: A systematic review. Obstet Gynecol Surv. 2007;62(5):335–47.
Bedaiwy MA, Mahfouz RZ, Goldberg JM, Sharma R, Falcone T, Abdel Hafez MF, et al. Relationship of reactive oxygen species levels in day 3 culture media to the outcome of In vitro fertilization/ intracytoplasmic sperm injection cycles. Fertil Steril [Internet]. 2010;94(6):2037–42.
Available:http://dx.doi.org/10.1016/j.fertnstert.2009.12.020
Fujimoto VY, Bloom MS, Huddleston HG, Shelley WB, Ocque AJ, Browne RW. Correlations of follicular fluid oxidative stress biomarkers and enzyme activities with embryo morphology parameters during in vitro fertilization. Fertil Steril [Internet]. 2011;96(6):1357–61.
Available:http://dx.doi.org/10.1016/j.fertnstert.2011.09.032
Lee TH, Lee MS, Liu CH, Tsao HM, Huang CC, Yang YS. The association between microenvironmental reactive oxygen species and embryo development in assisted reproduction technology cycles. Reprod Sci. 2012;19(7):725–32.
Dozortsev D, Ermilov A, El-Mowafi DM, Diamond M. The impact of cellular fragmentation induced experimentally at different stages of mouse preimplantation development. Hum Reprod. 1998; 13(5):1307–11.
Keltz M, Fritz R, Gonzales E, Ozensoy S, Skorupski J, Stein D. Defragmentation of low grade day 3 embryos resulted in sustained reduction in fragmentation, but did not improve compaction or blastulation rates. Fertil Steril [Internet]. 2010; 94(6):2406–8.
Available:http://dx.doi.org/10.1016/j.fertnstert.2010.03.014
Alikani M, Cohen J, Tomkin G, Garrisi GJ, Mack C, Scott RT. Human embryo fragmentation in vitro and its implications for pregnancy and implantation. Fertil Steril. 1999;71(5):836–42.
Stensen MH, Tanbo TG, Storeng R, Åbyholm T, Fedorcsak P. Fragmentation of human cleavage-stage embryos is related to the progression through meiotic and mitotic cell cycles. Fertil Steril. 2015; 103(2):374-381.e4.
Zhang Y, Liu L, Yin TL, Yang J, Xiong CL. Follicular metabolic changes and effects on oocyte quality in polycystic ovary syndrome patients. Oncotarget. 2017;8(46):80472–80.
Safari S, Khalili MA, Barekati Z, Halvaei I, Anvari M, Nottola SA. Cosmetic micromanipulation of vitrified-warmed cleavage stage embryos does not improve ART outcomes: An ultrastructural study of fragments. Reprod Biol [Internet]. 2017; 17(3):210–7.
Available:http://dx.doi.org/10.1016/j.repbio.2017.05.003
Stigliani S, Anserini P, Venturini PL, Scaruffi P. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation. Hum Reprod. 2013; 28(10):2652–60.
Halvaei I, Khalili MA, Esfandiari N, Safari S, Talebi AR, Miglietta S, et al. Ultrastructure of cytoplasmic fragments in human cleavage stage embryos. J Assist Reprod Genet [Internet]. 2016; 33(12):1677–84.
Available:http://dx.doi.org/10.1007/s10815-016-0806-1
Johansson M, Hardarson T, Lundin K. There is a cutoff limit in diameter between a blastomere and a small anucleate fragment. J Assist Reprod Genet. 2003;20(8):309–13.
Otasevic V, Surlan L, Vucetic M, Tulic I, Buzadzic B, Stancic A, et al. Expression patterns of mitochondrial OXPHOS components, mitofusin 1 and dynamin-related protein 1 are associated with human embryo fragmentation. Reprod Fertil Dev. 2016;28(3):319–27.
Pereira N, Palermo GD. Intracytoplasmic sperm injection: History, indications, technique, and safety. Intracytoplasmic Sperm Inject Indic Tech Appl. 2018; 9–21.
Esteves SC, Roque M, Bedoschi G, Haahr T, Humaidan P. Intracytoplasmic sperm injection for male infertility and consequences for offspring. Nat Rev Urol [Internet]. 2018;15(9):535–62.
Available:http://dx.doi.org/10.1038/s41585-018-0051-8
Danis RB, Samplaski MK. Sperm Morphology: History, Challenges, and Impact on Natural and Assisted Fertility. Curr Urol Rep. 2019;20(8).
Mangoli E, Khalili MA, Talebi AR, Agha-Rahimi A, Soleimani M, Faramarzi A, et al. IMSI procedure improves clinical outcomes and embryo morphokinetics in patients with different aetiologies of male infertility. Andrologia. 2019;51(8):1–9.
Colaco S, Sakkas D. Paternal factors contributing to embryo quality. J Assist Reprod Genet. 2018;35(11):1953–68.
Chapuis A, Gala A, Ferrières-Hoa A, Mullet T, Bringer-Deutsch S, Vintejoux E, et al. Sperm quality and paternal age: Effect on blastocyst formation and pregnancy rates. Basic Clin Androl [Internet]. 2017;27(1): 1–9.
Available:http://dx.doi.org/10.1186/s12610-016-0045-4
Aston KI, Uren PJ, Jenkins TG, Horsager A, Cairns BR, Smith AD, et al. Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertil Steril [Internet]. 2015;104(6):1388-1397.e5.
Available:http://dx.doi.org/10.1016/j.fertnstert.2015.08.019
Mitchell V, Sigala J, Jumeau F, Ballot C, Peers MC, Decanter C, et al. ICSI treatment in severe asthenozoospermia. Gynecol Obstet Fertil. 2012;40(12):766–9.
Hashimoto H, Ishikawa T, Goto S, Kokeguchi S, Fujisawa M, Shiotani M. The effects of severity of oligozoospermia on intracytoplasmic sperm injection (ICSI) cycle outcome. Syst Biol Reprod Med. 2010;56(1):91–5.
Mangoli E, Khalili MA, Talebi AR, Kalantar SM, Montazeri F, Agharahimi A, et al. Association between early embryo morphokinetics plus transcript levels of sperm apoptotic genes and clinical outcomes in IMSI and ICSI cycles of male factor patients. J Assist Reprod Genet. 2020;37(10):2555–67.
Weenen C, Laven JSE, von Bergh ARM, Cranfield M, Groome NP, Visser JA, et al. Anti-Müllerian hormone expression pattern in the human ovary: Potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod. 2004;10(2):77–83.
Hsu MI. Changes in the PCOS phenotype with age. Steroids [Internet]. 2013; 78(8):761–6.
Available:http://dx.doi.org/10.1016/j.steroids.2013.04.005
Hamza SM, Abd-Alrahman SJ, Raheem SM. Correlation between levels of serum antioxidants and numerous hormones in primary infertility of women. 2016;3(3):17–20.
Iliodromiti S, Anderson RA, Nelson SM. Technical and performance characteristics of anti-Müllerian hormone and antral follicle count as biomarkers of ovarian response. Hum Reprod Update. 2015;21(6): 698–710.
Cui L, Qin Y, Gao X, Lu J, Geng L, Ding L, et al. Antimüllerian hormone: correlation with age and androgenic and metabolic factors in women from birth to postmenopause. Fertil Steril. 2016; 105(2):481-485.e1.
Debbarh H, Louanjli N, Aboulmaouahib S, Jamil M, Ahbbas L, Kaarouch I, et al. Antioxidant activities and lipid peroxidation status in human follicular fluid: Age-dependent change. Zygote; 2021.
-
Abstract View: 429 times
PDF Download: 186 times